Trang chủ
Loigiaihay.com 2025

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết
Bình chọn:
4.9 trên 7 phiếu

SGK Toán 6 Chân trời sáng tạo

CHƯƠNG 1. SỐ TỰ NHIÊN

Giải bài 1, 2, 3 trang 43, bài 4, 5 trang 44 SGK Toán lớp 6 tập 1 Chân trời sáng tạo - Bài 13 Bội chung. Bội chung nhỏ nhất.

Bài 1 trang 43 SGK Toán lớp 6 tập 1 - Chân trời sáng tạo

Câu hỏi:

Tìm:

a) BC(6, 14);          b) BC(6, 20, 30);          

c) BCNN(1,6);        d) BCNN (10, 1, 12);            

e) BCNN (5, 14).

Phương pháp: 

Muốn tìm BCNN của hai hay nhiều số lớn hơn 1, ta thực hiện ba bước sau:

Bước 1: Phân tích mỗi số ra thừa số nguyên tố.

Bước 2: Chọn ra các thừa số nguyên tố chung và riêng.

Bước 3: Lập tích các thừa số đã chọn, mỗi thừa số lấy với số mũ lớn nhất của nó.

Tích đó là BCNN phải tìm.

Nhận xét: - Nếu các số đã cho từng đôi một nguyên tố cùng nhau thì BCNN của chúng là tích của các số đó.

- BC của một số là bội của BCNN của số đó.

Chú ý: 2 số a và b được gọi là nguyên tố cùng nhau nếu ƯCLN (a,b) = 1

Lời giải: 

a) Ta có: 6 = 2.3; 14 = 2.7 ⇒ BCNN(6,14) = 2.3.7 = 42.

Khi đó tập hợp bội chung của 6 và 14 là tập hợp bội của 42:

BC(6, 14) = B(42) = {0; 42; 84; 126; …}.

b) Ta có: 6 = 2.3; 20 =22.5; 30 = 2.3.5 ⇒ BCNN(6, 20, 30) = 22.3.5 =60

Khi đó tập hợp bội chung của 6, 20 và 30 là tập hợp bội của 60:

BC(6, 20, 30) = B(60) = {0; 60; 120; 180; …}.

c) Vì 1 và 6 là hai số nguyên tố cùng nhau nên BCNN(1, 6) = 1.6 = 6.

d) Ta có: BCNN(10, 1, 12) = BCNN(10, 12)

Phân tích 10 và 12 ra thừa số nguyên tố: 10 = 2.5, 12 = 22.3.

Suy ra BCNN(10, 12) = 22.3.5 = 60.

Vậy BCNN(10, 12) = 22.3.5 = 60.

e) Vì 5 và 14 là hai số nguyên tố cùng nhau nên BCNN(5, 14) = 5.14 = 70. 

Bài 2 trang 43 SGK Toán lớp 6 tập 1 - Chân trời sáng tạo

Câu hỏi:

a) Ta có BCNN(12, 16) = 48. Hãy viết tập hợp A các bội của 48. Nhận xét về tập hợp BC(12, 16) và tập hợp A.

b) Để tìm tập hợp bội chung của hai số tự nhiên a và b, ta có thể tìm tập hợp các bội của BCNN(a, b). Hãy vận dụng để tìm tập hợp các bội chung của:

i. 24 và 30;               ii. 42 và 60;          

iii. 60 và 150;            iv. 28 và 35.

Phương pháp:

Muốn tìm BCNN của hai hay nhiều số lớn hơn 1, ta thực hiện ba bước sau:

Bước 1: Phân tích mỗi số ra thừa số nguyên tố.

Bước 2: Chọn ra các thừa số nguyên tố chung và riêng.

Bước 3: Lập tích các thừa số đã chọn, mỗi thừa số lấy với số mũ lớn nhất của nó.

Tích đó là BCNN phải tìm.

- Nếu các số đã cho từng đôi một nguyên tố cùng nhau thì BCNN của chúng là tích của các

số đó.

Nhận xét: BC của một số là bội của BCNN của số đó.

Lời giải: 

a) Các bội của 48 là 0, 48, 96, 144, 196,…

Do đó: A = {0; 48; 96; 144; 192;…}

BC(12, 16) = {0; 48; 96; 144; 192;…}

* Nhận xét: Tập hợp BC(12, 16) chính là tập hợp A.

b) 

i) Ta có: 24 = 23.3; 30 = 2.3.5.

Suy ra BCNN(24,30) = 23.3.5 = 12=.

Vậy BC(24, 30) = B(120) = {0; 120; 240; 360; 480; …}

ii) Ta có: 42 = 2.3.7; 60 =22.3.5.

Suy ra BCNN(42,60) = 22.3.5.7 = 420.

Vậy BC(42, 60) = B(42) = {0; 420; 840; 1260; …}.

iii) Ta có: 60 = 22.3.5; 150 = 2.3.52

⇒ BCNN( 60, 150) = 22.3.52 = 300.

 BC(60, 150) = B(300) = {0; 300; 600; 900; …}.

iv) Ta có:  

⇒ BCNN( 28,35) = 22.5.7 =140.

BC(28,35) = B(140) = {0; 140; 280; 420;...}

Bài 3 trang 43 SGK Toán lớp 6 tập 1 - Chân trời sáng tạo

Câu hỏi:

Quy đồng mẫu số các phân số sau (có sử dụng bội chung nhỏ nhất):

Phương pháp:

Muốn quy đồng mẫu số nhiều phân số ta có thể làm như sau:

Bước 1: Tìm một bội chung của các mẫu số (thường là BCNN) để làm mẫu số chung.

Bước 2: Tìm thừa số phụ của mỗi mẫu số (bằng cách chia mẫu số chung cho từng mẫu số riêng).

Bước 3: Nhân tử số và mẫu số của mỗi phân số với thừa số phụ tương ứng.

Lời giải:

a) 16 = 24, 24 = 23.3

Khi đó BCNN(16, 24) = 24.3 = 48.

48:16 = 3; 48:24 = 2. Do đó:

 

b) 20 = 22.5; 30 = 2.3.5; 60 = 22.3.5.

Khi đó BCNN(20, 30, 15) = 22.3.5 = 60.

60:20 = 3; 60:30 = 2; 60:15 = 4. Do đó:

 

Bài 4 trang 44 SGK Toán lớp 6 tập 1 - Chân trời sáng tạo

Câu hỏi:

Thực hiện phép tính (có sử dụng bội chung nhỏ nhất):

Phương pháp:

Mẫu số chung ta chọn là BCNN của các mẫu số của các phân số có trong phép tính

Lời giải: 

Bài 5 trang 44 SGK Toán lớp 6 tập 1 - Chân trời sáng tạo

Câu hỏi:

Chị Hoà có một số bông sen. Nếu chị bó thành các bó gồm 3 bông, 5 bông hay 7 bông thì đều vừa hết. Hỏi chị Hoà có bao nhiêu bông sen? Biết rằng chị Hoà có khoảng từ 200 đến 300 bông.

Phương pháp:

Số bông sen là bội chung của 3, 5, 7 và \(200 \le x \le 300\).

Lời giải:

- Gọi x là số bông sen chị Hòa có. (x là số tự nhiên thuộc khoảng từ 200 đến 300)

- Vì chị bó thành các bó gồm 3 bông, 5 bông hay 7 bông đều vừa hết nên số bông sen chị Hòa có là bội chung của 3, 5 và 7.

- Suy ra x thuộc BC(3, 5, 7) 

Vì 3, 5, 7 từng đôi một là số nguyên tố cùng nhau 

⇒ BCNN(3, 5, 7) = 3 . 5 . 7 =105 

⇒ BC(3, 5, 7) = B(105) = {0; 105; 210; 315;…}

⇒ x thuộc BC(3, 5, 7) ={0; 105; 210; 315;…}

Mà 200  x  300  Nên x = 210.

Số bông sen chị Hòa có là 210 bông.

Giaibaitap.me

Góp ý - Báo lỗi

Vấn đề em gặp phải là gì ?

Hãy viết chi tiết giúp Giaibaitap.me

Bài giải mới nhất

Bài giải mới nhất các môn khác