Trang chủ
Bình chọn:
4.1 trên 17 phiếu

Giải bài tập Toán 7 Kết nối tri thức

CHƯƠNG VI. TỈ LỆ THỨC VÀ ĐẠI LƯỢNG TỈ LỆ

Giải SGK Toán 7 trang 21 tập 2 Kết nối tri thức - Bài tập cuối chương 6 Tỉ lệ thức và đại lượng tỉ lệ. Bài 6.33 Lập tất cả các tỉ lệ thức có thể được từ bốn số sau: 0,2; 0,3; 0,8; 1,2.

Bài 6.33 trang 21 sách giáo khoa Toán 7 Kết nối tri thức tập 2

Lập tất cả các tỉ lệ thức có thể được từ bốn số sau: 0,2; 0,3; 0,8; 1,2.

Lời giải: 

Ta có: 0,2 . 1,2 = 0,3 . 0,8

Các tỉ lệ thức có thể được là:

\(\dfrac{{0,2}}{{0,3}} = \dfrac{{0,8}}{{1,2}};\dfrac{{0,2}}{{0,8}} = \dfrac{{0,3}}{{1,2}};\dfrac{{1,2}}{{0,3}} = \dfrac{{0,8}}{{0,2}};\dfrac{{1,2}}{{0,8}} = \dfrac{{0,3}}{{0,2}}\) 

Bài 6.34 trang 21 sách giáo khoa Toán 7 Kết nối tri thức tập 2

Tìm thành phần chưa biết x trong tỉ lệ thức: \(\dfrac{x}{{2,5}} = \dfrac{{10}}{{15}}\)

Lời giải: 

Vì \(\dfrac{x}{{2,5}} = \dfrac{{10}}{{15}}\) nên x. 15 = 2,5 . 10 \( \Rightarrow 15.x = 25 \Rightarrow x = \dfrac{{25}}{{15}} = \dfrac{5}{3}\)

Vậy \(x = \dfrac{5}{3}\) 

Bài 6.35 trang 21 sách giáo khoa Toán 7 Kết nối tri thức tập 2

Từ tỉ lệ thức \(\dfrac{a}{b} = \dfrac{c}{d}\) ( với a,b,c,d khác 0) có thể suy ra những tỉ lệ thức nào?

Lời giải: 

Ta có: \(\dfrac{a}{b} = \dfrac{c}{d}\) nên a.d = b.c

Ta suy ra được các tỉ lệ thức: \(\dfrac{a}{c} = \dfrac{b}{d};\dfrac{d}{b} = \dfrac{c}{a};\dfrac{d}{c} = \dfrac{b}{a}\)

Bài 6.36 trang 21 sách giáo khoa Toán 7 Kết nối tri thức tập 2

Inch ( đọc là in-sơ và viết tắt là in) là tên của một đơn vị chiều dài trong Hệ đo lường Mĩ. Biết rằng 1 in = 2,54 cm.

a) Hỏi một người cao 170 cm sẽ có chiều cao là bao nhiêu inch (làm tròn kết quả đến hàng đơn vị)?

b) Chiều cao của một người tính theo xentimet có tỉ lệ thuận với chiều cao của người đó tính theo inch không? Nếu có thì hệ số tỉ lệ là bao nhiêu?

Lời giải: 

a) Chiều cao của người đó là:

170 : 2,54 \( \approx \)66,9 \( \approx \)67 ( inch)

b) Chiều cao của một người tính theo xentimet có tỉ lệ thuận với chiều cao của người đó tính theo inch vì chúng liên hệ với nhau theo công thức: Chiều dài (theo cm) = 2,54. Chiều dài (theo inch)

Hệ số tỉ lệ là 2,54.

Bài 6.37 trang 21 sách giáo khoa Toán 7 Kết nối tri thức tập 2

Số đo ba góc \(\widehat A,\widehat B,\widehat C\) của tam giác ABC tỉ lệ với 5;6;7. Tính số đo ba góc của tam giác đó.

Lời giải: 

Trong tam giác ABC có: \(\widehat A + \widehat B + \widehat C = 180^\circ \)

Mà số đo ba góc \(\widehat A,\widehat B,\widehat C\) của tam giác ABC tỉ lệ với 5;6;7 nên \(\dfrac{{\widehat A}}{5} = \dfrac{{\widehat B}}{6} = \dfrac{{\widehat C}}{7}\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

\(\begin{array}{l}\dfrac{{\widehat A}}{5} = \dfrac{{\widehat B}}{6} = \dfrac{{\widehat C}}{7} = \dfrac{{\widehat A + \widehat B + \widehat C}}{{5 + 6 + 7}} = \dfrac{{180^\circ }}{{18}} = 10^\circ \\ \Rightarrow \widehat A = 10^\circ .5 = 50^\circ \\\widehat B = 10^\circ .6 = 60^\circ \\\widehat C = 10^\circ .7 = 70^\circ \end{array}\)

Vậy số đo 3 góc \(\widehat A,\widehat B,\widehat C\) lần lượt là \(50^\circ ;60^\circ ;70^\circ \)

Bài 6.38 trang 21 sách giáo khoa Toán 7 Kết nối tri thức tập 2

Ba đội công nhân làm đường được giao ba khối lượng công việc như nhau. Đội thứ nhất hoàn thành công việc trong 4 ngày, đội thứ hai trong 5 ngày và đội thứ ba trong 6 ngày. Tính số công nhân của mỗi đội biết đội thứ nhất nhiều hơn đội thứ hai là 3 người và năng suất của các công nhân là như nhau trong suốt quá trình làm việc.

Lời giải: 

Gọi số công nhân mỗi đội lần lượt là x,y,z (người) (x,y,z \( \in \)N*).

Vì số công nhân của đội thứ nhất nhiều hơn số công nhân của đội thứ hai là 3 người nên x – y = 3

Vì khối lượng công việc là như nhau và năng suất của các máy như nhau nên số công nhân và thời gian hoàn thành là 2 đại lượng tỉ lệ nghịch.

Áp dụng tính chất của hai đại lượng tỉ lệ nghịch, ta có:

4x=5y=6z

\(\begin{array}{l} \Rightarrow \dfrac{x}{{\dfrac{1}{4}}} = \dfrac{y}{{\dfrac{1}{5}}} = \dfrac{z}{{\dfrac{1}{6}}} = \dfrac{{x - y}}{{\dfrac{1}{4} - \dfrac{1}{5}}} = \dfrac{3}{{\dfrac{1}{{20}}}} = 3:\dfrac{1}{{20}} = 3.20 = 60\\ \Rightarrow x = 60.\dfrac{1}{4} = 15\\y = 60.\dfrac{1}{5} = 12\\z = 60.\dfrac{1}{6} = 10\end{array}\)

Vậy 3 đội có lần lượt là 15; 12 và 10 công nhân.

Giaibaitap.me

Góp ý - Báo lỗi

Vấn đề em gặp phải là gì ?

Hãy viết chi tiết giúp Giaibaitap.me

Bài giải mới nhất

Bài giải mới nhất các môn khác