Trang chủ
Loigiaihay.com 2025

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết
Bình chọn:
3.7 trên 16 phiếu

Giải bài tập Toán 7 Kết nối tri thức

CHƯƠNG IX. QUAN HỆ GIỮA CÁC YẾU TỐ TRONG MỘT TAM GIÁC

Giải SGK Toán 7 trang 76 tập 2 Kết nối tri thức - Bài 34 Sự đồng quy của ba đường trung tuyến, ba đường phân giác trong một tam giác sgk toán 7 tập 2 Kết nối tri thức với cuộc sống. Bài 9.24 Gọi BE và CF là hai đường phân giác của tam giác ABC cân tại A. Chứng minh BE = CF.

Bài 9.20 trang 76 sách giáo khoa Toán 7 Kết nối tri thức tập 2

Cho tam giác ABC với hai đường trung tuyến BN, CP và trọng tâm G. Hãy tìm số thích hợp vào chỗ chấm hỏi để được các đẳng thức:

BG = ? BN, CG = ? CP;

BG = ? GN, CG = ? GP.

Lời giải: 

Vì G là trọng tâm của \(\Delta ABC\) nên \(BG = \dfrac{2}{3}BN,CG = \dfrac{2}{3}CP\)

Ta có: GN = BN – BG = BN - \(\dfrac{2}{3}\)BN = \(\dfrac{1}{3}\)BN; GP = CP – CG = CP - \(\dfrac{2}{3}\)CP = \(\dfrac{1}{3}\)CP

Do đó, BN = 3. GN ; CP = 3. GP

Như vậy, \(BG = \dfrac{2}{3}BN = \dfrac{2}{3}.3.GN = 2GN;CG = \dfrac{2}{3}CP = \dfrac{2}{3}.3.GP = 2GP\)

Vậy \(BG = \dfrac{2}{3}BN,CG = \dfrac{2}{3}CP\);

BG = 2GN; CG = 2GP.

Bài 9.21 trang 76 sách giáo khoa Toán 7 Kết nối tri thức tập 2

Chứng minh rằng:

a) Trong một tam giác cân, hai đường trung tuyến ứng với 2 cạnh bên là hai đoạn thẳng bằng nhau.

b) Ngược lại, nếu tam giác có hai đường trung tuyến bằng nhau thì tam giác đó cân.

Lời giải: 

Gọi BM, CN là 2 đường trung tuyến của \(\Delta ABC\)

\( \Rightarrow \)MA = MC = \(\dfrac{1}{2}\)AC; NA = NB = \(\dfrac{1}{2}\)AB

Vì \(\Delta ABC\) cân tại A nên AB = AC ( tính chất)

Do đó, AM = MC = NA = NB

Xét \(\Delta \)ANC và \(\Delta \)AMB, ta có:

AN = AM

\(\widehat A\) chung

AC = AB

\( \Rightarrow \)\(\Delta \)ANC = \(\Delta \)AMB (c.g.c)

\( \Rightarrow \) NC = MB ( 2 cạnh tương ứng)

Vậy 2 đường trung tuyến ứng với 2 cạnh bên của tam giác cân là hai đoạn thẳng bằng nhau.

Vì \(∆ABC\) có hai đường trung tuyến \(BM\) và \(CN\) cắt nhau ở \(G\)

\(\Rightarrow \) \(G\) là trọng tâm của tam giác \(ABC\).

\(\Rightarrow  GB = \dfrac{2}{3}BM\); \(GC = \dfrac{2}{3}CN\) ( tính chất đường trung tuyến trong tam giác)

Mà \(BM = CN\) (giả thiết) nên \(GB = GC.\)

Tam giác \(GBC\) có \(GB = GC\) nên \(∆GBC\) cân tại \(G\).

\(\Rightarrow \) \(\widehat{GCB} = \widehat{GBC}\) (Tính chất tam giác cân).

Xét \(∆BCN\) và \(∆CBM\) có: 

+) \(BC\) là cạnh chung

+) \(CN = BM\) (giả thiết)

+) \(\widehat{GCB} = \widehat{GBC}\) (chứng minh trên)

Suy ra \(∆BCN = ∆CBM\) (c.g.c)

 \(\Rightarrow \) \(\widehat{NBC} = \widehat{MCB}\) (hai góc tương ứng).

\(\Rightarrow ∆ABC\) cân tại \(A\) (tam giác có hai góc bằng nhau là tam giác cân)

Bài 9.22 trang 76 sách giáo khoa Toán 7 Kết nối tri thức tập 2

Cho góc xOy khác góc bẹt. Dùng compa dựng đường tròn tâm O cắt Ox tại A và cắt Oy tại B. Sau đó dựng hai đường tròn tâm A, tâm B có bán kính bằng nhau sao cho chúng cắt nhau tại M nằm nên trong góc xOy. Chứng minh rằng tia OM là tia phân giác của góc xOy.

Lời giải: 

Ta có: AM = bán kính đường tròn tâm A

BM = bán kính đường tròn tâm B

Mà 2 đường tròn này có bán kính bằng nhau

Do đó, AM = BM

Xét \(\Delta \)OAM và \(\Delta \)ONM có:

OA = OB( = bán kính đường tròn tâm O)

MA = MB

OM chung

\( \Rightarrow \) \(\Delta \)OAM và \(\Delta \)ONM ( c.c.c)

\( \Rightarrow \) \(\widehat {AOM} = \widehat {BOM}\) ( 2 góc tương ứng)

Mà OM nằm giữa 2 tia OA và OB

\( \Rightarrow \) OM là tia phân giác của góc AOB.

Bài 9.23 trang 76 sách giáo khoa Toán 7 Kết nối tri thức tập 2

Kí hiệu I là điểm đồng quy của ba đường phân giác trong tam giác ABC. Tính góc BIC khi biết góc BAC bằng 120\(^\circ \).

Lời giải: 

Vì BI là tia phân giác của góc ABC nên \(\widehat {{B_1}} = \widehat {{B_2}} = \dfrac{1}{2}.\widehat {ABC}\)

Vì CI là tia phân giác của góc ACB nên \(\widehat {{C_1}} = \widehat {{C_2}} = \dfrac{1}{2}.\widehat {ACB}\)

Áp dụng định lí tổng ba góc trong tam giác ABC, ta có:

\(\begin{array}{l}\widehat {BAC} + \widehat {ABC} + \widehat {ACB} = 180^\circ \\ \Rightarrow \widehat {ABC} + \widehat {ACB} = 180^\circ  - \widehat {BAC} = 180^\circ  - 120^\circ  = 60^\circ \\ \Rightarrow \widehat {{B_2}} + \widehat {{C_2}} = \dfrac{1}{2}.\left( {\widehat {ABC} + \widehat {ACB}} \right) = \dfrac{1}{2}.60^\circ  = 30^\circ \end{array}\)

Áp dụng định lí tổng ba góc trong tam giác BIC, ta có:

\(\begin{array}{l}\widehat {BIC} + \widehat {{B_2}} + \widehat {{C_2}} = 180^\circ \\ \Rightarrow \widehat {BIC} = 180^\circ  - \left( {\widehat {{B_2}} + \widehat {{C_2}}} \right) = 180^\circ  - 30^\circ  = 150^\circ \end{array}\)

Vậy \(\widehat {BIC} = 150^\circ \)

Bài 9.24 trang 76 sách giáo khoa Toán 7 Kết nối tri thức tập 2

Gọi BE và CF là hai đường phân giác của tam giác ABC cân tại A. Chứng minh BE = CF.

Lời giải: 

Vì tam giác ABC cân tại A nên AB = AC; \(\widehat {ABC} = \widehat {ACB}\) ( tính chất)

Vì BE là là tia phân giác của góc ABC nên \(\widehat {{B_1}} = \widehat {{B_2}} = \dfrac{1}{2}.\widehat {ABC}\)

Vì CF là tia phân giác của góc ACB nên \(\widehat {{C_1}} = \widehat {{C_2}} = \dfrac{1}{2}.\widehat {ACB}\)

Do đó, \(\widehat {{B_1}} = \widehat {{C_1}}\)

Xét \(\Delta ABE\) và \(\Delta ACF\), ta có:

\(\widehat A\) chung

AB = AC

\(\widehat {{B_1}} = \widehat {{C_1}}\)

\( \Rightarrow \Delta ABE = \Delta ACF\left( {g.c.g} \right)\)

\( \Rightarrow \)BE = CF ( 2 cạnh tương ứng)

Bài 9.25 trang 76 sách giáo khoa Toán 7 Kết nối tri thức tập 2

Trong tam giác ABC, hai đường phân giác của các góc B và C cắt nhau tại D. Kẻ DP vuông góc với BC, DQ vuông góc với CA, DR vuông góc với AB.

a) Hãy giải thích tại sao DP = DR.

b) Hãy giải thích tại sao DP = DQ.

c) Từ câu a và b suy ra DR = DQ. Tại sao D nằm trên tia phân giác của góc A? ( Đây là một cách chứng minh định lí 2)

Lời giải: 

a) Vì BD là tia phân giác của góc ABC nên \(\widehat {{B_1}} = \widehat {{B_2}} = \dfrac{1}{2}.\widehat {ABC}\)

Vì CD là tia phân giác của góc ACB nên \(\widehat {{C_1}} = \widehat {{C_2}} = \dfrac{1}{2}.\widehat {ACB}\)

Xét \(\Delta BDP\) vuông tại P và \(\Delta BDR\) vuông tại R, ta có:

 \(\widehat {{B_2}} = \widehat {{B_1}}\)

BD chung

\( \Rightarrow \Delta BDP = \Delta BDR\) ( cạnh huyền – góc nhọn)

\( \Rightarrow \) DP = DR ( 2 cạnh tương ứng) (1)

b) Xét \(\Delta CDP\) vuông tại P và \(\Delta CDQ\) vuông tại Q, ta có:

 \(\widehat {{C_2}} = \widehat {{C_1}}\)

CD chung

\( \Rightarrow \Delta CDP = \Delta CDQ\) ( cạnh huyền – góc nhọn)

\( \Rightarrow \) DP = DQ ( 2 cạnh tương ứng) (2)

c) Từ (1) và (2), ta được: DR = DQ ( cùng bằng DP).

D nằm trên tia phân giác của góc A do D cách đều AB và AC.

Giaibaitap.me

Góp ý - Báo lỗi

Vấn đề em gặp phải là gì ?

Hãy viết chi tiết giúp Giaibaitap.me

Bài giải mới nhất

Bài giải mới nhất các môn khác