Bài 9.26 trang 81 sách giáo khoa Toán 7 Kết nối tri thức tập 2
Gọi H là trực tâm của tam giác ABC không vuông. Tìm trực tâm của các tam giác HBC, HCA, HAB.
Lời giải:
a)
Trong ΔABC ta có H là trực tâm nên:
AH ⊥ BC tại N, BH ⊥ AC tại P, CH ⊥ AB tại M
Trong ΔAHB, ta có:
HM ⊥ AB
BN ⊥ AH
Mà MH cắt BN tại C
=> C là trực tâm của tam giác AHB.
Trong ΔHAC, ta có:
HP ⊥ AC
CN ⊥ AH
Mà HP cắt CN tại B
=> B là trực tâm của ΔHAC.
Trong ΔHBC, ta có:
HN ⊥ BC
BM ⊥ HC
Mà HN cắt BM tại A
=> A là trực tâm của tam giác HBC
Bài 9.27 trang 81 sách giáo khoa Toán 7 Kết nối tri thức tập 2
Cho tam giác ABC có \(\widehat A = {100^0}\) và trực tâm H. Tìm góc BHC.
Lời giải:
Gọi E là chân đường cao từ C xuống AB, D là chân đường cao từ B xuống AC
=> HC ⊥ BE, HB ⊥ CD
Ta có:
\(\begin{array}{l}\widehat {BAC} + \widehat {BAD} = {180^0}\\ \Rightarrow {100^0} + \widehat {BAD} = {180^0}\\ \Rightarrow \widehat {BAD} = {180^0} - {100^0}\\ \Rightarrow \widehat {BAD} = {80^0}\end{array}\)
∆ ADB là tam giác vuông tại D:
\(\begin{array}{l}\widehat {BAD} + \widehat {ABD} = {90^0}\\ \Rightarrow {80^0} + \widehat {ABD} = {90^0}\\ \Rightarrow \widehat {ABD} = {10^0}\end{array}\)
∆ BEH là tam giác vuông tại E
\(\begin{array}{l}\widehat {EBH} + \widehat {BHE} = {90^0}\\ \Rightarrow {10^0} + \widehat {BHE} = {90^0}\\ \Rightarrow \widehat {BHE} = {80^0}\end{array}\)
Hay \(\widehat {BHC} = {80^0}\)
Bài 9.28 trang 81 sách giáo khoa Toán 7 Kết nối tri thức tập 2
Xét điểm O cách đều 3 đỉnh của tam giác ABC. Chứng minh rằng nếu O nằm trên một cạnh của tam giác ABC thì ABC là một tam giác vuông.
Lời giải:
O cách đều 3 đỉnh của tam giác ABC
\( \Rightarrow \) \(OA = OB = OC\)
\( \Rightarrow \) \(\Delta OAB\) cân tại O.
Giả sử O là trung điểm BC
\( \Rightarrow \widehat {OAB} = \widehat {OBA}\)
\(\Delta OAC\) cân tại O
\( \Rightarrow \widehat {OAC} = \widehat {OCA}\)
Xét tam giác ABC có
\(\begin{array}{l}\widehat A + \widehat B + \widehat C = {180^0}\\ \Rightarrow \widehat A + \widehat {OAB} + \widehat {OAC} = {180^0}\\ \Rightarrow \widehat A + \widehat A = {180^0}\\ \Rightarrow \widehat A = {90^0}\end{array}\)
Vậy nếu O nằm trên một cạnh của tam giác ABC thì ABC là một tam giác vuông.
Bài 9.29 trang 81 sách giáo khoa Toán 7 Kết nối tri thức tập 2
a) Có một chi tiết máy ( đường viền ngoài là đường tròn) bị gãy. (H.9.46). Làm thế nào để xác định được bán kính của đường viền này ?
b) Trên bản đồ, ba khu dân cư được quy hoạch tại điểm A, B, C không thẳng hàng. Hãy tìm trên bản đồ một điểm M cách đều A, B, C để quy hoạch một trường học
Lời giải:
a)
- Lấy ba điểm phân biệt A, B, C trên đường viền ngoài chi tiết máy.
- Vẽ đường trung trực cạnh AB và cạnh BC. Hai đường trung trực này cắt nhau tại O. Khi đó O là tâm cần xác định.
- Bán kính đường tròn cần tìm là độ dài đoạn OB (hoặc OA hoặc OC).
b)
- Bước 1: Vẽ đường trung trực của các đoạn AB, AC, BC
- Bước 2: 3 đường trung trực này cắt nhau tại M. Khi đó MA= MB=MC.
- Bước 3: M là điểm cần xác định.
Bài 9.30 trang 81 sách giáo khoa Toán 7 Kết nối tri thức tập 2
Cho hai đường thẳng không vuông góc b,c cắt nhau tại điểm A và cho điểm H không thuộc b và c (H.9.47). Hãy tìm điểm B thuộc b, điểm C thuộc c sao cho tam giác ABC nhận H làm trực tâm.
Lời giải:
- Kẻ HD \( \bot \) đường thẳng c tại điểm D, HE \( \bot \) đường thẳng b tại điểm E
- Nối A với H. Kéo dài DH cắt đường thẳng b tại B.
Từ B kẻ đường vuông góc với AH, đường thẳng đó cắt đường thẳng c tại 1 điểm. Điểm đó chính là điểm C.
=> H là trực tâm của tam giác ABC.
Giaibaitap.me
Giải SGK Toán 7 trang 83 tập 2 Kết nối tri thức - Bài Luyện tập chung. Bài 9.31 Chứng minh rằng tam giác có đường trung tuyến và đường cao xuất phát từ cùng một đỉnh trùng nhau là một tam giác cân.
Giải SGK Toán 7 trang 84 tập 2 Kết nối tri thức - Bài tập cuối chương 9 Quạn hệ giữa các yếu tố trong một tam giác. Bài 9.38 Gọi AI và AM lần lượt là đường cao và đường trung tuyến xuất phát từ đỉnh A của tam giác ABC
Giải SGK Toán 7 trang 102 tập 2 Kết nối tri thức - Bài tập cuối chương 10 Một số hình khối trong thực tiễn. Bài 10.25 Một chiếc cốc có dạng hình trụ, chứa đầy nước. Hỏi nếu bỏ vào cốc 5 viên đá dạng hình lập phương có cạnh 2 cm thì lượng nước trào ra ngoài là bao nhiêu?
Giải SGK Toán 7 trang 90, 91 tập 2 Kết nối tri thức - Bài 36 Hình hộp chữ nhật và hình lập phương. Bài 10.4 Một xe đông lạnh có thùng hàng dạng hình hộp chữ nhật, kích thước lòng thùng hàng dài 5,6 m, rộng 2 m, cao 2 m. Tính thể tích lòng của thùng hàng.