Trang chủ
Loigiaihay.com 2025

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết
Bình chọn:
3.8 trên 5 phiếu

Giải bài tập Toán 7 Chân trời sáng tạo

CHƯƠNG VIII. TAM GIÁC - TOÁN 7 CTST

Giải bài tập trang 62, 63 Bài 3 Tam giác cân sgk toán 7 tập 2 chân trời sáng tạo. Bài 1 Tìm các tam giác cân và tam giác đều trong mỗi hình sau (Hình 13). Giải thích.

Bài 1 trang 62 sách giáo khoa Toán 7 Chân trời sáng tạo tập 2

Tìm các tam giác cân và tam giác đều trong mỗi hình sau (Hình 13). Giải thích.

Lời giải: 

a) Tam giác ABM là tam giác đều do có 3 cạnh bằng nhau

   Tam giác AMC cân tại M do AM = MC

b) Tam giác EDG là tam giác đều do có 3 cạnh bằng nhau

   Tam giác EHF cân tại E do EH = EF

   Tam giác EDH cân tại D do DH = DE

c) Tam giác EGF cân tại G do GE = GF

   Tam giác IHG đều do là tam giác cân có 1 góc = 60°

   Tam giác EHG cân tại E do EG = EH

d) Tam giác MBC không cân và không đều vì 3 góc có số đo khác nhau

Bài 2 trang 62 sách giáo khoa Toán 7 Chân trời sáng tạo tập 2

Cho Hình 14, biết ED = EF và EI là tia phân giác của \(\widehat {DEF}\)

Chứng minh rằng:

a) \(\Delta EID = \Delta EIF\)

b) Tam giác DIF cân

Lời giải: 

a) Xét tam giác EID và tam giác EIF có :

IE chung

ED = EF

\(\widehat {IED} = \widehat {IEF}\)( EI là tia phân giác của \(\widehat {DEF}\))

\( \Rightarrow \Delta EID = \Delta EIF(c - g - c)\)

b) Vì \(\Delta EID = \Delta EIF\) nên ID = IF ( 2 cạnh tương ứng )

Do đó tam giác DIF cân tại I (theo định nghĩa tam giác cân)

Bài 3 trang 63 sách giáo khoa Toán 7 Chân trời sáng tạo tập 2

Cho tam giác ABC cân tại A có \(\widehat A = {56^o}\)(Hình 15)

a) Tính\(\widehat B\), \(\widehat C\)

b) Gọi M, N lần lượt là trung điểm của AB, AC. Chứng minh rằng tam giác AMN cân.

c) Chứng minh rằng MN // BC

Lời giải:

a) Theo đề bài ta có tam giác ABC cân ở A và \(\widehat A = {56^o}\)

Mà \( \Rightarrow \widehat A + \widehat B + \widehat C = {180^o}\)

\( \Rightarrow \widehat B = \widehat C = ({180^o} - {56^o}):2 = {62^o}\)

b) Vì tam giác ABC cân tại A nên AB = AC ( định nghĩa tam giác cân )

Mà M, N là trung điểm của AB, AC

Nên AM = AN

Xét tam giác AMN có AM = AN nên AMN là tam giác cân tại A

\( \Rightarrow \widehat M = \widehat N = ({180^o} - {56^o}):2 = {62^o}\)

c) Vì \(\widehat {AMN}=\widehat {ABC}\) (cùng bằng 62°)

Mà chúng ở vị trí đồng vị nên MN⫽BC

Bài 4 trang 63 sách giáo khoa Toán 7 Chân trời sáng tạo tập 2

Cho tam giác ABC cân tại A (Hình 16). Tia phân giác của góc B cắt AC tại F, tia phân giác của góc C cắt AB tại E.

a) Chứng minh rẳng \(\widehat {ABF} = \widehat {ACE}\)

b) Chứng minh rằng tam giác AEF cân

c) Gọi I là giao điểm của BF và CE. Chứng minh rằng tam giác IBC và tam giác IEF là những tam giác cân

Lời giải:

a) Vì tam giác ABC cân tại A

\( \Rightarrow \widehat B = \widehat C \Rightarrow \dfrac{1}{2}\widehat B = \dfrac{1}{2}\widehat C \Rightarrow \widehat {ABF} = \widehat {ACE}\)

b) Xét \(\Delta ECA\) và \(\Delta FBA\)có:

\(\widehat{A}\) chung

AB = AC

\(\widehat {ABF} = \widehat {ACE}\)

\( \Rightarrow \)\(\Delta ECA\)= \(\Delta FBA\)( g – c – g )

\( \Rightarrow AE = AF và EC = BF\) (2 cạnh tương ứng)

\( \Rightarrow \Delta AEF\) cân tại A

c) Xét tam giác IBC có :

\(\widehat B = \widehat C \Rightarrow \dfrac{1}{2}\widehat B = \dfrac{1}{2}\widehat C \Rightarrow \widehat {ICB} = \widehat {IBC}\)

Do đó, tam giác IBC cân tại I ( 2 góc ở đáy bằng nhau )

\( \Rightarrow IB = IC\)( cạnh tương ứng )

Vì EC = BF ( câu b) và IB = IC

\( \Rightarrow \) EC – IC = BF – BI

\( \Rightarrow \) EI = FI

\( \Rightarrow \Delta IEF\) cân tại I

Bài 5 trang 63 sách giáo khoa Toán 7 Chân trời sáng tạo tập 2

Phần thân của một móc treo quần áo có dạng hình tam giác cân (Hình 17a) được vẽ lại như Hình 17b. Cho biết AB = 20 cm; BC = 28 cm và \(\widehat B\)= 35°. Tìm số đo các góc còn lại và chu vi của tam giác ABC.

Lời giải:

Vì tam giác ABC cân tại A

\( \Rightarrow \) AB = AC ( định lí tam giác cân ) = 20 cm

\( \Rightarrow \) Chu vi tam giác ABC = AB + AC + BC = 20 + 20 + 28 = 68 cm

Vì ABC là tam giác cân tại A \( \Rightarrow \widehat B = \widehat C\) ( 2 góc ở đáy ) = 35°

Mà theo định lí tổng 3 góc trong tam giác = 180°

\( \Rightarrow \widehat A = {180^o} - \widehat B - \widehat C = {180^o} - {35^o} - {35^o} = {110^o}\)

Bài 6 trang 63 sách giáo khoa Toán 7 Chân trời sáng tạo tập 2

Một khung cửa sổ hình tam giác có thiết kế như Hình 18a được vẽ lại như Hình 18b.

a) Cho biết \(\widehat {{A_1}}\)\( = {42^o}\). Tính số đo của \(\widehat {{M_1}}\),\(\widehat {{B_1}}\),\(\widehat {{M_2}}\).

b) Chứng minh MN // BC, MP // AC.

c) Chứng minh bốn tam giác cân AMN, MBP, PMN, NPC bằng nhau.

Lời giải:

a)      Ta thấy tam giác AMN cân tại A do AM = AN

\( \Rightarrow \widehat {{M_1}} = ({180^o} - \widehat {{A_1}}):2 = ({180^o} - {42^o}):2 = {69^o}\)

Ta thấy tam giác PMN = tam giác AMN ( c-c-c )

\( \Rightarrow \widehat {{M_1}} = \widehat {PMN} = {69^o}\) (góc tương ứng )

Mà \( \Rightarrow \widehat {{M_1}} + \widehat {{M_2}} + \widehat {PMN} = {180^o}\)( các góc kề bù )

\( \Rightarrow \widehat {{M_2}} = {180^o} - {69^o} - {69^o} = {42^o}\)

Mà tam giác MPB cân tại M do MB = MP nên

\( \Rightarrow \widehat {{B_1}} = \widehat {MPB}\)

Áp dụng định lí tổng 3 góc trong tam giác

\( \Rightarrow \widehat {{B_1}} = ({180^o} - {42^o}):2 = {69^o}\)

b)      Ta thấy \(\widehat {{B_1}}\)và \(\widehat {{M_1}}\)ở vị trí đồng vị và bằng nhau nên

\( \Rightarrow \)MN⫽BC

Vì tam giác PMN = tam giác AMN nên ta có

\( \Rightarrow \widehat {{M_1}} = \widehat {ANM} = \widehat {PMN} = \widehat {MNP}\)( do 2 tam giác cân và bằng nhau )

Mà \(\widehat {MNA}\)và\(\widehat {PMN}\) ở vị trí so le trong

\( \Rightarrow \)MP⫽AC

c)      Ta có \(\Delta AMN = \Delta PMN = \Delta MBP(c - g - c)\)(1)

Vì MP⫽AC ( chứng minh trên )

\( \Rightarrow \widehat {MPN} = \widehat {PNC}\) ( 2 góc so le trong ) =\({42^o}\)

\( \Rightarrow \Delta MPN = \Delta NCP(c - g - c)\)(2)

Từ (1) và (2) \( \Rightarrow \) 4 tam giác cân AMN, MBP, PMN, NCP bằng nhau 

Giaibaitap.me

Góp ý - Báo lỗi

Vấn đề em gặp phải là gì ?

Hãy viết chi tiết giúp Giaibaitap.me

  • Giải bài 1, 2, 3, 4, 5 trang 66 SGK Toán 7 tập 2 - CTST

    Giải bài tập trang 66 Bài 4 Đường vuông góc và đường xiên sgk toán 7 tập 2 chân trời sáng tạo. Bài 4 Quan sát Hình 10. Tìm đoạn ngắn nhất trong các đoạn BA, BM, BC.

  • Giải bài 1, 2, 3, 4, 5, 6 trang 70 SGK Toán 7 tập 2 - CTST

    Giải bài tập trang 70 Bài 5 Đường trung trực của một đoạn thẳng sgk toán 7 tập 2 chân trời sáng tạo. Bài 4 Quan sát Hình 13, biết AB = AC, DB = DC. Chứng minh rằng M là trung điểm của BC.

  • Giải bài 1, 2, 3 trang 72 SGK Toán 7 tập 2 - CTST

    Giải bài tập trang 72 Bài 6 Tính chất ba đường trung trực của tam giác sgk toán 7 tập 2 chân trời sáng tạo. Bài 3 Người ta muốn phục chế lại một đĩa cổ hình tròn bị vỡ chỉ còn lại một mảnh (Hình 6). Làm thế nào để các định được bán kính của đĩa cổ này?

  • Giải bài 1, 2, 3, 4, 5, 6 trang 75, 76 SGK Toán 7 tập 2 - CTST

    Giải bài tập trang 75, 76 Bài 7 Tính chất ba đường trung tuyến của tam giác sgk toán 7 tập 2 chân trời sáng tạo. Bài 5 Cho tam giác ABC có đường trung tuyến BM bằng đường trung tuyến CN. Chứng minh rằng tam giác ABC cân.

Bài giải mới nhất

Bài giải mới nhất các môn khác