Bài 1 trang 78 sách giáo khoa Toán 7 Chân trời sáng tạo tập 2
Cho tam giác ABC vuông tại A. Lấy điểm H thuộc cạnh AB. Vẽ HM vuông góc với BC tại M. Tia MH cắt tia CA tại N. Chứng minh rằng CH vuông góc với NB.
Lời giải:
Vì tam giác ABC vuông tại A theo giả thiết nên BA vuông góc với AC
Vì HM cắt AC tại N mà HM vuông góc với BC (giả thiết)
\( \Rightarrow \) NM vuông góc với BC tại M
Xét tam giác NBC có NM và BA là 2 đường cao
Mà MN cắt AB tại H nên H là trực tâm của tam giác NBC
\( \Rightarrow \) CH đường cao của tam giác NBC (3 đường cao của tam giác đi qua 1 điểm)
\( \Rightarrow \) CH vuông góc với NB
Bài 2 trang 78 sách giáo khoa Toán 7 Chân trời sáng tạo tập 2
Cho tam giác ABC vuông tại A. Trên tia BA lấy điểm M sao cho BM = BC. Tia phân giác của góc B cắt AC tại H. Chứng minh rằng MH vuông góc với BC.
Lời giải:
Gọi D giao điểm của tia phân giác của góc B và MC
Xét tam giác BDM và tam giác BDC có :
BD chung
\(\widehat {MBD} = \widehat {CBD}\) ( BD là phân giác của góc B)
BM = BC ( giả thiết )
( \Rightarrow \Delta BDM=\Delta BDC\)(c.g.c)
\( \Rightarrow \widehat {BDM} = \widehat {BDC}\)(2 góc tương ứng)
Mà 2 góc ở vị trí kề bù \( \Rightarrow \widehat {BDM} = \widehat {BDC} = {90^o} \Rightarrow BD \bot CM\)
Mà AC cắt BD tại H \( \Rightarrow \) H là trực tâm tam giác BMC
\( \Rightarrow \) MH là đường cao của tam giác BMC (định lí 3 đường cao đi qua trực tâm tam giác)
\( \Rightarrow \) MH vuông góc với BC
Bài 3 trang 78 sách giáo khoa Toán 7 Chân trời sáng tạo tập 2
Cho tam giác ABC vuông cân tại A. Lấy điểm E thuộc cạnh AC. Trên tia đối của tia AB lấy điểm D sao cho AD = AE. Chứng minh rằng:
a) DE vuông góc với BC b) BE vuông góc với DC
Lời giải:
a) Vì tam giác ABC vuông cân tại A
\( \Rightarrow \) \(\widehat B = \widehat C = {45^o}\)(2 góc ở đáy bằng nhau)
Xét tam giác AED có :
AE = AD
AC vuông góc với AB
\( \Rightarrow \) Tam giác AED vuông cân tại A
\( \Rightarrow \widehat {ADE} = \widehat {AED} = {45^o}\)
Mà \(\widehat {AED};\widehat {CEF}\)là 2 góc đối đỉnh \( \Rightarrow \widehat {AED} = \widehat {CEF} = {45^o}\)
Xét tam giác CEF áp dụng định lí tổng 3 góc trong tam giác ta có :
\( \Rightarrow \widehat F + \widehat C + \widehat E = {180^o}\)
\( \Rightarrow \widehat F = {180^o} - {45^o} - {45^o} = {90^o} \Rightarrow EF \bot BC \Rightarrow DE \bot BC\)
b) Vì DE vuông góc với BC \( \Rightarrow \) DE là đường cao của tam giác BCD
Vì AC cắt DE tại E nên E là trực tâm tam giác BCD (Do AC cũng là đường cao của tam giác BCD)
\( \Rightarrow \)BE cùng là đường cao của tam giác BCD (định lí 3 đường cao trong tam giác đi qua trực tâm)
\( \Rightarrow \)BE vuông góc với DC
Bài 4 trang 78 sách giáo khoa Toán 7 Chân trời sáng tạo tập 2
Cho tam giác nhọn ABC có ba đường cao AB, BE, CF. Biết AD = BE = CF. Chứng minh rằng tam giác ABC đều.
Lời giải:
Xét tam giác BFC và tam giác BEC có :
BC chung
FC = BE
\(\widehat {BFC} = \widehat {BEC} = {90^o}\)
( cạnh huyền – cạnh góc vuông)
\( \Rightarrow \widehat C = \widehat B\) ( 2 góc tương ứng ) (1)
Xét tam giác CFA và tam giác ADC ta có :
CF = AD
AC chung
\(\widehat {ADC} = \widehat {AFC} = {90^o}\)
(cạnh huyền – cạnh góc vuông)
\( \Rightarrow \widehat C = \widehat A\)(2 góc tương ứng ) (2)
Từ (1) và (2) \( \Rightarrow \widehat C = \widehat A = \widehat B\) \( \Rightarrow \)Tam giác ABC là tam giác đều do có 3 góc bằng nhau
Giaibaitap.me
Giải bài tập trang 81, 82 Bài 9 Tính chất ba đường phân giác của tam giác sgk toán 7 tập 2 chân trời sáng tạo. Cho tam giác ABC cân tại A. Tia phân giác của các góc B và C cắt nhau tại M. Tia AM cắt BC tại H. Chứng minh rằng H là trung điểm của BC
Giải bài tập trang 84 Bài tập cuối chương 8 Tam giác sgk toán 7 tập 2 chân trời sáng tạo. Bài 2 Cho tam giác ABC vuông tại A, vẽ đường cao AH. Trên tia đối của tia HA lấy điểm M sao cho H là trung điểm của AM.
Giải bài tập trang 89 Bài 1 Làm quen với biến cố ngẫu nhiên sgk toán 7 tập 2 chân trời sáng tạo. Một hộp 3 chiếc bút mực và 1 chiếc bút chì. Lấy ra ngẫu nhiên cùng một lúc hai bút từ hộp.
Giải bài tập trang 93, 94 Bài 2 Làm quen với xác suất của biến cố ngẫu nhiên sgk toán 7 tập 2 chân trời sáng tạo. Một hộp có chứa 100 chiếc thẻ cùng loại, trong đó chỉ có một thẻ đánh dấu là Thẻ may mắn.