Bài 4.16 trang 69 sách giáo khoa Toán 7 Kết nối tri thức tập 1
Cho hai tam giác ABC và DEF thoả mãn \(AB = DE,AC = DF,\widehat {BAC} = \widehat {EDF} = {60^\circ },BC = 6\;{\rm{cm}},\widehat {ABC} = {45^\circ }\). Tính độ dài cạnh EF và số đo các góc ACB, DEF, EFD.
Lời giải:
Xét hai tam giác ABC và DEF có:
\(\begin{array}{l}AB = DE\\AC = DF\\\widehat {BAC} = \widehat {EDF} = {60^\circ }\end{array}\)
\(\Rightarrow \Delta ABC = \Delta DEF\)(c.g.c)
Do đó:
\(EF = BC = 6cm\)
\(\widehat {DEF} = \widehat {ABC} = {45^o}\)
\(\begin{array}{l}\widehat {BAC} + \widehat {ABC} + \widehat {ACB} = {180^o}\\ \Rightarrow {60^o} + {45^o} + \widehat {ACB} = {180^o}\\ \Rightarrow \widehat {ACB} = {75^o}\end{array}\)
\( \Rightarrow \widehat {EFD} = \widehat {ACB} = {75^o}\)
Bài 4.17 trang 69 sách giáo khoa Toán 7 Kết nối tri thức tập 1
Cho hai tam giác ABC và DEF thoả mãn \(AB = DE\), \(\widehat {ABC} = \widehat {DEF} = {70^\circ },\widehat {BAC} = \widehat {EDF} = {60^\circ },AC = 6\;{\rm{cm}}.\)
Tính độ dài cạnh DF.
Lời giải:
Xét hai tam giác ABC và DEF có:
\(\begin{array}{l}\widehat {ABC} = \widehat {DEF} (= {70^\circ })\\AB = DE\\\widehat {BAC} = \widehat {EDF} (= {60^\circ })\end{array}\)
\( \Rightarrow \Delta ABC{\rm{ = }}\Delta DEF\)(g.c.g)
\( \Rightarrow DF = AC\)( 2 cạnh tương ứng)
Mà AC = 6 cm
\( \Rightarrow DF = 6cm\)
Bài 4.18 trang 69 sách giáo khoa Toán 7 Kết nối tri thức tập 1
Cho Hình 4.44, biết \(EC = ED\) và \(\widehat {AEC} = \widehat {AED}\). Chứng minh rằng:
\(\begin{array}{*{20}{l}}{{\rm{ a) }}\Delta AEC = \Delta AED;}&{{\rm{ b) }}\Delta ABC = \Delta ABD.}\end{array}\)
Lời giải:
Bài 4.19 trang 69 sách giáo khoa Toán 7 Kết nối tri thức tập 1
Cho tia Oz là tia phân giác của góc xOy. Lấy các điểm A,B,C lần lượt thuộc các tia Ox, Oy, Oz sao cho \(\widehat {CAO} = \widehat {CBO}.\)
a) Chứng minh rằng \(\Delta OAC = \Delta OBC\).
b) Lấy điểm \(M\) trên tia đối của tia CO. Chứng minh rằng \(\Delta MAC = \Delta MBC\).
Lời giải:
a)
Xét \(\Delta OAC\) và \(\Delta OBC\) có:
\(\widehat {AOC} = \widehat {AOB}\)(Oz là phân giác góc xOy)
OC chung
\(\widehat {CAO} = \widehat {CBO}.\)
\(\Rightarrow \Delta OAC = \Delta OBC\)(g.c.g)
b) Do \(\Delta OAC = \Delta OBC\) nên AC=BC ( 2 cạnh tương ứng)
Vì \(\widehat {ACO}\) và \(\widehat {ACM}\) kề bù
\(\widehat {BCO}\) và \(\widehat {BCM}\) kề bù
Mà \(\widehat {ACO} = \widehat {BCO}\) nên \(\widehat {ACM} = \widehat {BCM}\)
Xét \(\Delta MAC\) và \(\Delta MBC\) có:
AC=BC
\(\widehat {ACM} = \widehat {BCM}\)
CM chung
\( \Rightarrow \Delta MAC = \Delta MBC\)(c.g.c)
Giaibaitap.me
Giải SGK Toán 7 trang 79 tập 1 Kết nối tri thức - Bài 15 Các trường hợp bằng nhau của tam giác vuông. Bài 4.20 Mỗi hình sau có các cặp tam giác vuông nào bằng nhau? Vì sao?
Giải SGK Toán 7 trang 84 tập 1 Kết nối tri thức - Bài 16: Tam giác cân. Đường trung trực của đoạn thẳng. Bài 4.27 Trong Hình 4.70, đường thẳng nào là đường trung trực của đoạn thẳng AB?
Giải SGK Toán 7 trang 86 tập 1 Kết nối tri thức - Bài luyện tập chung. Bài 4.29 Cho Hình 4.73. Hãy tính các độ dài a, b và số đo x, y của các góc trên hình vẽ.
Giải SGK Toán 7 trang 87 tập 1 Kết nối tri thức - Bài tập cuối chương 4: Tam giác bằng nhau. Cho M, N là hai điểm phân biệt nằm trên đường trung trực của đoạn thẳng AB sao cho AM = AN. Theo em, tứ giác AMBN là hình gì?