Trang chủ
Loigiaihay.com 2025

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết
Bình chọn:
3.9 trên 13 phiếu

Giải sách bài tập Toán 7

CHƯƠNG II. TAM GIÁC

Giải bài tập trang 144, 145 bài 5 trường hợp bằng nhau thứ nhất của tam giác góc-cạnh-góc (g-c-g) Sách Bài Tập Toán lớp 7 tập 1. Câu 53: Cho tam giác ABC. Các tia phân giác của các góc B và C cắt nhau ở O...

Câu 53 trang 144 Sách Bài Tập (SBT) Toán lớp 7 tập 1

Cho tam giác ABC. Các tia phân giác của các góc B và C cắt nhau ở O. Kẻ \({\rm{OD}} \bot AC\), kẻ \({\rm{O}}E \bot AB\). Chứng minh rằng OD = OE.

Giải

Kẻ \(OH \bot BC\)

Xét hai tam giác vuông OEB và OHB, ta có:

\(\widehat {OEB} = \widehat {OHB} = 90^\circ \)

Cạnh huyền OB chung

\(\widehat {EBO} = \widehat {HBO}\) (gt)

Suy ra: ∆OEB = ∆OHB (cạnh huyền, góc nhọn)

\( \Rightarrow \) OE = OH (hai cạnh tương ứng)                    (1)

Xét hai tam giác vuông OHC và ODC, ta có:

\(\widehat {OHC} = \widehat {O{\rm{D}}C} = 90^\circ \)

Cạnh huyền OC chung

\(\widehat {HCO} = \widehat {DCO}\left( {gt} \right)\)

Suy ra: ∆OHC = ∆ODC (cạnh huyền, góc nhọn)

\( \Rightarrow \) OH = OD (hai cạnh tương ứng)                     (2)

Từ (1) và (2) suy ra: OE = OD.

 


Câu 54 trang 144 Sách Bài Tập (SBT) Toán lớp 7 tập 1

Cho tam giác ABC có AB = AC. Lấy điểm D trên cạnh AB, điểm E trên cạnh AC sao cho AD = AE.

a) Chứng minh rằng  BE = CD.

b) Gọi O là giao điểm của BE  và CD. Chứng minh rằng ∆BOD = ∆COE

Giải

a) Xét ∆BEA và ∆CDA, ta có:

BA = CA (gt)

\(\widehat A\) chung

AE = AD (gt)

Suy ra: ∆BEA = ∆CDA (c.g.c)

Vậy BE = CD (hai cạnh tương ứng)

b) ∆BEA = ∆CDA (chứng minh trên)

\(\Rightarrow \widehat {{B_1}} = \widehat {{C_1}};\widehat {{E_1}} = \widehat {{D_1}}\) (hai góc tương ứng)

\(\widehat {{E_1}} + \widehat {{E_2}} = 180^\circ \) (hai góc kề bù)

\(\widehat {{D_1}} + \widehat {{D_2}} = 180^\circ \) (hai góc kề bù)

Suy ra: \(\widehat {{E_2}} = \widehat {{D_2}}\)

             AB = AC (gt)

\( \Rightarrow \) AE + EC  =  AD + DB mà AE = AD (gt) => EC = DB

Xét ∆ODB và ∆OCE, ta có:

\(\widehat {{D_2}} = \widehat {{E_2}}\) (chứng minh trên)

DB = EC (chứng minh trên)

\(\widehat {{B_1}} = \widehat {{C_1}}\) (chứng minh trên)

Suy ra: ∆ODB = ∆OEC (g.c.g)


Câu 55 trang 145 Sách Bài Tập (SBT) Toán lớp 7 tập 1

Cho tam giác ABC có \(\widehat B = \widehat C\). Tia phân giác góc A cắt BC tại D. Chứng minh rằng DB = DC, AB = AC.

Giải

Trong ∆ADB, ta có:

\(\widehat B + \widehat {{A_1}} + \widehat {{D_1}} = 180^\circ \) (tổng ba góc trong tam giác)

Suy ra: \(\widehat {{D_1}} = 180^\circ  - \left( {\widehat B + \widehat {{A_1}}} \right)\)                          (1)

Trong ∆ADC, ta có:

\(\widehat C + \widehat {{D_2}} + \widehat {{A_2}} = 180^\circ \) (tổng ba góc trong tam giác)

Suy ra: \(\widehat {{D_2}} = 180^\circ  - \left( {\widehat C + \widehat {{A_2}}} \right)\)                          (2)

            \(\widehat B = \widehat C\left( {gt} \right)\)

            \(\widehat {{A_1}} = \widehat {{A_2}}\left( {gt} \right)\)

           \(\widehat B = \widehat C\left( {gt} \right)\)

Từ (1), (2) và (gt) suy ra: \(\widehat {{D_1}} = \widehat {{D_2}}\)

Xét ∆ADB và ∆ADC, ta có:

             \(\widehat {{A_1}} = \widehat {{A_2}}\)

              AD cạnh chung

             \(\widehat {{D_1}} = \widehat {{D_2}}\) (chứng minh trên)

Suy ra: ∆ADB = ∆ADC(g.c.g)

Vậy: AB = AC (2 cạnh tương ứng)

         DB = DC (2 cạnh tương ứng)

 


Câu 56 trang 145 Sách Bài Tập (SBT) Toán lớp 7 tập 1

Cho hình dưới, chứng minh rằng O là trung điểm của mỗi đoạn thẳng AD, BC

Giải

Hai đường thẳng AB và CD tạo với BD có hai góc trong cùng phía bù nhau

\(120^\circ  + 60^\circ  = 180^\circ \)

Suy ra  AB // CD

Ta có: \(\widehat A = \widehat {{D_1}}\)           (hai góc trong so le)

            \(\widehat {{B_1}} = \widehat C\) (hai góc trong so le)

            AB = CD (gt)

Suy ra: ∆AOB = ∆DOC (g.c.g)

Suy ra: OA = OD; OB = OC (hai cạnh tương ứng)

Vậy O là trung điểm của mỗi đoạn thẳng AD và BC.

Giaibaitap.me

Góp ý - Báo lỗi

Vấn đề em gặp phải là gì ?

Hãy viết chi tiết giúp Giaibaitap.me

Bài giải mới nhất

Bài giải mới nhất các môn khác