Trang chủ
Bình chọn:
5 trên 1 phiếu

Giải sách bài tập Toán 7

CHƯƠNG III. QUAN HỆ GIỮA CÁC YẾU TỐ TRONG TAM GIÁC. CÁC ĐƯỜNG ĐỒNG QUY CỦA TAM GIÁC

Giải bài tập trang 41 bài 3 quan hệ giữa ba cạnh của một tam giác, bất đẳng thức tam giác Sách Bài Tập (SBT) Toán lớp 7 tập 2. Câu 3.5: Chứng minh rằng trong một đường tròn, đường kính là dây lớn nhất...

Câu 3.5 trang 41 Sách Bài Tập (SBT) Toán lớp 7 tập 2

Chứng minh rằng trong một đường tròn, đường kính là dây lớn nhất.

Giải

Giả sử CD là một dây của đường tròn bán kính R và AB là một đường kính của nó. Ta có:

- Nếu C, O, D không thẳng hàng thì trong tam giác COD có

CD < OC  + OD = 2R = AB.

- Nếu C, O, D thằng hàng thì

CD = OC + OD = 2R = AB

Vậy trong mọi trường hợp ta luôn có đường kính là dây lớn nhất.

Câu 3.6 trang 41 Sách Bài Tập (SBT) Toán lớp 7 tập 2

Chứng minh “Bất đẳng thức tam giác mở rộng ”: Với ba điểm A, B, C bất kỳ, ta có

AB + AC ≥ BC

Giải

- Nếu A, B, C không thẳng hàng thì trong tam giác ABC ta có AB + AC > BC

- Nếu A, B, C thẳng hàng và A ở giữa B và C hoặc trùng B, C thì AB + AC = BC

Vậy với ba điểm A, B, C bất kỳ ta luôn có AB + AC ≥ BC

Câu 3.7 trang 41 Sách Bài Tập (SBT) Toán lớp 7 tập 2

Cho đường thẳng d và hai điểm A, B nằm cùng một phía của d và AB không song song với d. Một điểm M di động trên d. Tìm vị trí của M sao cho \(\left| {MA - MB} \right|\) là lớn nhất

Giải

Vì AB không song song với d nên AB cắt d tại N.

Với điểm M bất kỳ thuộc d mà M không trùng với N thì ta có tam giác MAB.

Do đó

\(\left| {MA - MB} \right| < AB\)

Khi M ≡ N thì

\(\left| {MA - MB} \right| = AB\)

Vậy \(\left| {MA - MB} \right|\) lớn nhất là bằng AB, khi đó M ≡ N là giao điểm của hai đường thẳng d và AB.

Giaibaitap.me

Góp ý - Báo lỗi

Vấn đề em gặp phải là gì ?

Hãy viết chi tiết giúp Giaibaitap.me