Bài 3.27 trang 58 sách giáo khoa Toán 7 Kết nối tri thức tập 1
Cho hình thang ABCD có cạnh AD vuông góc với hai đáy AB và CD. Số đo góc ở đỉnh B gấp đôi số đo góc ở đỉnh C. Tính số đo các góc của hình thang đó.
Lời giải:
Vì ABCD có 2 đáy AB,CD nên AB // CD. Do đó, \(\widehat B + \widehat C = 180^\circ \) ( 2 góc trong cùng phía)
Mặt khác:
\(\begin{array}{l}\widehat B = 2.\widehat C\\ \Rightarrow 2.\widehat C + \widehat C = 180^\circ \\ \Rightarrow 3.\widehat C = 180^\circ \\ \Rightarrow \widehat C = 180^\circ :3 = 60^\circ \end{array}\)
Bài 3.28 trang 58 sách giáo khoa Toán 7 Kết nối tri thức tập 1
Vẽ hình minh họa và viết giả thiết, kết luận của định lí: “ Hai đường thẳng phân biệt cùng vuông góc với một đường thẳng thứ ba thì chúng song song với nhau”
Lời giải:
Bài 3.29 trang 58 sách giáo khoa Toán 7 Kết nối tri thức tập 1
Kẻ các tia phân giác Ax, By của một cặp góc so le trong tạo bởi đường thẳng b vuông góc với hai đường thẳng song song c, d ( H.3.48). Chứng minh rằng hai tia phân giác đó nằm trên hai đường thẳng song song.
Lời giải:
Vì Ax là tia phân giác của góc A vuông nên \(\widehat {{A_1}} = \widehat {{A_2}} = \frac{1}{2}.90^\circ = 45^\circ \)
Vì By là tia phân giác của góc B vuông nên \(\widehat {{B_1}} = \widehat {{B_2}} = \frac{1}{2}.90^\circ = 45^\circ \)
Vì \(\widehat {{A_2}} = \widehat {{B_2}}( = 45^\circ )\), mà hai góc này ở vị trí so le trong nên Ax // By (Dấu hiệu nhận biết hai đường thẳng song song)
Bài 3.30 trang 58 sách giáo khoa Toán 7 Kết nối tri thức tập 1
Cho hai đường thẳng phân biệt a, b cùng vuông góc với đường thẳng c; d là một đường thẳng khác c và d vuông góc với a. Chứng minh rằng:
a) a // b; b) c // d; c) b\( \bot \)d
Lời giải:
a) Vì \(c \bot a;c \bot b \Rightarrow a//b\) ( hai đường thẳng cùng vuông góc với một đường thẳng thứ ba thì song song với nhau)
b) Vì \(a \bot c;a \bot d \Rightarrow c//d\)( hai đường thẳng cùng vuông góc với một đường thẳng thứ ba thì song song với nhau)
c) Vì \(b \bot c;c//d \Rightarrow b \bot c\) ( đường thẳng vuông góc với 1 trong 2 đường thẳng song song thì cũng vuông góc với đường thẳng kia)
Bài 3.31 trang 58 sách giáo khoa Toán 7 Kết nối tri thức tập 1
Cho Hình 3.49. Chứng minh rằng:
a) d // BC; b) d \( \bot \)AH; c) Trong các kết luận trên, kết luận nào được suy ra từ tính chất của hai đường thẳng song song, kết luận nào được suy ra từ dấu hiệu nhận biết hai đường thẳng song song?
Lời giải:
a) Vì \(\widehat {{A_1}} = \widehat {{C_1}}( = 50^\circ )\), mà 2 góc này ở vị trí so le trong nên d // BC (Dấu hiệu nhận biết hai đường thẳng song song ) (đpcm)
b) Vì d // BC, mà AH \( \bot \)BC nên d \( \bot \)BC ( Đường thẳng vuông góc với một trong hai đường thẳng song song thì cũng vuông góc với đường thẳng kia)
c) Trong các kết luận trên, kết luận a) được suy ra từ dấu hiệu nhận biết hai đường thẳng song song
Kết luận b) được suy ra từ tính chất của hai đường thẳng song song.
Giaibaitap.me
Giải SGK Toán 7 trang 59 tập 1 Kết nối tri thức - Bài tập cuối chương 3 góc và đường thẳng song song. Bài 3.33 Vẽ ba đường thẳng phân biệt a,b,c sao cho a//b, b//c và hai đường thẳng phân biệt m, n cùng vuông góc với a.
Giải SGK Toán 7 trang 62 tập 1 Kết nối tri thức - Bài 12 Tổng các góc trong một tam giác. Bài 4.2 Trong các tam giác (H.4.7), tam giác nào là tam giác nhọn, tam giác tù?
Giải SGK Toán 7 trang 67 tập 1 Kết nối tri thức với cuộc sống. Bài 13 Hai tam giác bằng nhau. Trường hợp bằng nhau thứ nhất của tam giác. Bài 4.4 Cho tam giác ABC và DEF như hình 4.18. Trong các khẳng định sau, khẳng định nào đúng?
Giải SGK Toán 7 trang 69 Bài luyện tập chung - Kết nối tri thức với cuộc sống. Bài 4.7 Các số đo x, y, z trong mỗi tam giác vuông dưới đây bằng bao nhiêu độ?