Trang chủ
Loigiaihay.com 2025

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết
Bình chọn:
4.9 trên 7 phiếu

Giải sách bài tập Toán 7

CHƯƠNG III. QUAN HỆ GIỮA CÁC YẾU TỐ TRONG TAM GIÁC. CÁC ĐƯỜNG ĐỒNG QUY CỦA TAM GIÁC

Giải bài tập trang 41 bài 3 quan hệ giữa ba cạnh của một tam giác, bất đẳng thức tam giác Sách Bài Tập (SBT) Toán lớp 7 tập 2. Câu 27: Cho điểm M nằm trong tam giác ABC. Chứng minh rằng tổng MA + MB + MC lớn hơn nửa chu vi tam giác ABC...

Câu 27 trang 41 Sách Bài Tập (SBT) Toán lớp 7 tập 2

Cho điểm M nằm trong tam giác ABC. Chứng minh rằng tổng MA + MB + MC lớn hơn nửa chu vi tam giác ABC.

Giải

Trong ∆AMB ta có:

MA + MB > AB (bất đẳng thức tam giác)          (1)

Trong ∆AMC ta có:

MA + MC > AC (bất đẳng thức tam giác)           (2)

Trong ∆BMC ta có:

MB + MC > BC (bất đẳng thức tam giác)             (3)

Cộng từng vế của (1), (2) và (3) ta có:

2(MA + MB + MC) > AB + AC + BC

Suy ra: \(MA + MB + MC > {{AB + AC + BC} \over 2}\)

 


Câu 28 trang 41 Sách Bài Tập (SBT) Toán lớp 7 tập 2

Tính chu vi của một tam giác cân biết độ dài hai cạnh của nó bằng 3dm và 5dm.

Giải

Vì tam giác cân hai cạnh bên bằng nhau. Trong hai số đo 3dm và 5dm có một số đo độ dài cạnh bên và một số đo độ dài cạnh đáy.

Nếu 3dm độ dài cạnh bên ta có: 3 + 3 > 5: tồn tại tam giác

Chu vi tam giác cân là: 3 + 3 + 5 = 11 (dm)

Nếu 5dm độ dài cạnh bên ta có:  5 + 5 > 3: tồn tại tam giác

Chu vi tam giác cân là: 5 + 5 + 3 = 13 (dm).

 


Câu 29 trang 41 Sách Bài Tập (SBT) Toán lớp 7 tập 2

Độ dài hai cạnh của một tam giác bằng 7cm và 2cm. Tính độ dài cạnh còn lại biết rằng số đo của nó theo xentimét là một số tự nhiên lẻ.

Giải

Giả sử ∆ ABC có AB = 7cm, AC = 2cm. Theo định lý và hệ quả về quan hệ giữa các cạnh trong một tam giác ta có:

AB – AC < BC < AB + AC =>  7 – 2 <  BC < 7 + 2 =>  5 < BC < 9

Vì số đo cạnh BC là một số tự nhiên lẻ nên BC = 7(cm)

 

Câu 30 trang 41 Sách Bài Tập (SBT) Toán lớp 7 tập 2

Cho tam giác ABC. Gọi M là trung điểm của BC.

Chứng minh rằng \(AM < {{AB + AC} \over 2}\)

Giải

Trên tia đối của tia MA lấy điểm D sao cho MA = MD

Xét ∆AMB và ∆DMC:

                MA = MD (theo cách vẽ)

                \(\widehat {AMB} = \widehat {DMC}\) (đối đỉnh)

                MB = MC (gt)

Do đó: ∆AMB = ∆DMC (c.g.c)

\( \Rightarrow \) AB = BC (hai cạnh tương ứng)

Trong ∆ACD ta có:

AD < AC + CD (bất đẳng thức tam giác)

Mà AD = AM + MD = 2AM

      CD = AB

\(2{\rm{A}}M < AC + AB \Rightarrow AM < {{AB + AC} \over 2}\)

Giaibaitap.me

Góp ý - Báo lỗi

Vấn đề em gặp phải là gì ?

Hãy viết chi tiết giúp Giaibaitap.me

Bài giải mới nhất

Bài giải mới nhất các môn khác