Trang chủ
Loigiaihay.com 2025

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết
Bình chọn:
4 trên 15 phiếu

Giải bài tập Toán 7 Chân trời sáng tạo

CHƯƠNG IV. GÓC VÀ ĐƯỜNG THẲNG SONG SONG - TOÁN 7 CTST

Giải bài tập trang 75 Bài 2 Tia phân giác sgk toán 7 tập 1 chân trời sáng tạo. Bài 3 Cho đường thẳng MN, PQ cắt nhau tại A Tính số đo các góc còn lại.

Bài 1 trang 75 sách giáo khoa Toán 7 Chân trời sáng tạo tập 1

a) Trong Hình 8, tìm tia phân giác của góc \(\widehat {ABC},\widehat {ADC}\)

b) Cho biết \(\widehat {ABC} = 100^\circ ;\widehat {ADC} = 60^\circ \). Tính số đo của các góc \(\widehat {ABO},\widehat {ADO}\)

Lời giải:

a) Tia BO là tia phân giác của \(\widehat {ABC}\) vì tia BO nằm giữa 2 tia BA và BC, tạo với 2 cạnh BA và BC 2 góc bằng nhau.

Tia DO là tia phân giác của \(\widehat {ADC}\) vì tia DO nằm giữa 2 tia DA và DC, tạo với 2 cạnh DA và DC 2 góc bằng nhau

b) Vì BO là tia phân giác của \(\widehat {ABC}\) nên \(\widehat {ABO} = \widehat {CBO} = \frac{1}{2}.\widehat {ABC} = \frac{1}{2}.100^\circ  = 50^\circ \)

Vì DO là tia phân giác của \(\widehat {ADC}\)nên \(\widehat {ADO} = \widehat {CDO} = \frac{1}{2}.\widehat {ADC} = \frac{1}{2}.60^\circ  = 30^\circ \)

Vậy \(\widehat {ABO} = 50^\circ ;\widehat {ADO} = 30^\circ \)

Bài 2 trang 75 sách giáo khoa Toán 7 Chân trời sáng tạo tập 1

a) Vẽ \(\widehat {xOy}\) có số đo là 110 \(^\circ \).

b) Vẽ tia phân giác của \(\widehat {xOy}\) trong câu a

Lời giải:

a) Các bước vẽ góc xOy có số đo 110 \(^\circ \).

Bước 1: Vẽ tia Ox bất kì. Ta đặt thước đo góc sao cho tâm của thước trùng với đỉnh O của góc.

Bước 2: Xoay thước sao cho một cạnh Ox của góc đi qua vạch 0 của thước và thước chồng lên phần trong của góc.

Bước 3: Tại vạch chỉ số 110 trên thước đo góc, chấm một chấm nhỏ. Nối điểm đó với điểm O.

Ta được góc xOy có số đo 110 \(^\circ \).

b)

Bài 3 trang 75 sách giáo khoa Toán 7 Chân trời sáng tạo tập 1

Cho đường thẳng MN, PQ cắt nhau tại A và tạọ thành \(\widehat {PAM} = 33^\circ \) (Hình 9)

a) Tính số đo các góc còn lại.

b) Vẽ tia At là tia phân giác của \(\widehat {PAN}\). Hãy tính số đo của \(\widehat {tAQ}\). Vẽ At’ là tia đối của tia At. Giải thích tại sao At’ là tia phân giác của \(\widehat {MAQ}\)

Lời giải:

a) Ta có: \(\widehat {PAM} = \widehat {QAN}\) ( 2 góc đối đỉnh) , mà \(\widehat {PAM} = 33^\circ \)nên \(\widehat {QAN} = 33^\circ \)

Vì \(\widehat {PAN} + \widehat {PAM} = 180^\circ \) ( 2 góc kề bù) nên \(\widehat {PAN} + 33^\circ  = 180^\circ  \Rightarrow \widehat {PAN} = 180^\circ  - 33^\circ  = 147^\circ \)

Vì \(\widehat {PAN} = \widehat {QAM}\)( 2 góc đối đỉnh) , mà \(\widehat {PAN} = 147^\circ \) nên \(\widehat {QAM} = 147^\circ \)

b)

Vì At là tia phân giác của \(\widehat {PAN}\) nên \(\widehat {PAt} = \widehat {tAN} = \frac{1}{2}.\widehat {PAN} = \frac{1}{2}.147^\circ  = 73,5^\circ \)

Vì \(\widehat {tAQ} + \widehat {PAt} = 180^\circ \) ( 2 góc kề bù) nên \(\widehat {tAQ} + 73,5^\circ  = 180^\circ  \Rightarrow \widehat {tAQ} = 180^\circ  - 73,5^\circ  = 106,5^\circ \)

Vẽ At’ là tia đối của tia At, ta được \(\widehat {QAt'} = \widehat {PAt}\)( 2 góc đối đỉnh)

Ta có: \(\widehat {QAt'} = \widehat {MAt'} = \frac{1}{2}.\widehat {MAQ}\) nên At’ là tia phân giác của \(\widehat {MAQ}\)

Chú ý:

2 tia phân giác của 2 góc đối đỉnh là 2 tia đối nhau

Bài 4 trang 75 sách giáo khoa Toán 7 Chân trời sáng tạo tập 1

Cho đường thẳng xy đi qua điểm O. Vẽ tia Oz sao cho \(\widehat {xOz} = 135^\circ \). Vẽ tia Ot sao cho \(\widehat {yOt} = 90^\circ \) và \(\widehat {zOt} = 135^\circ \). Gọi Ov là tia phân giác của \(\widehat {xOt}\). Các góc \(\widehat {xOv}\) và \(\widehat {yOz}\) có phải là hai góc đối đỉnh không? Vì sao?

Lời giải:

Vì \(\widehat {yOt} = 90^\circ  \Rightarrow Oy \bot Ot \Rightarrow Ox \bot Ot\) nên \(\widehat {xOt} = 90^\circ \)

Vì Ov là tia phân giác của \(\widehat {xOt}\) nên \(\widehat {xOv} = \widehat {vOt} = \frac{1}{2}.\widehat {xOt} = \frac{1}{2}.90^\circ  = 45^\circ \)

Vì \(\widehat {vOx} + \widehat {xOz} = 45^\circ  + 135^\circ  = 180^\circ \) nên Ov và Oz là hai tia đối nhau

Như vậy, các góc \(\widehat {xOv}\) và \(\widehat {yOz}\) là hai góc đối đỉnh vì Ox là tia đối của tia Oy, tia Ov là tia đối của tia Oz

Bài 5 trang 75 sách giáo khoa Toán 7 Chân trời sáng tạo tập 1

Vẽ hai góc kề bù \(\widehat {xOy},\widehat {yOx'}\), biết \(\widehat {xOy} = 142^\circ \). Gọi Oz là tia phân giác của \(\widehat {xOy}\). Tính \(\widehat {x'Oz}\)

Lời giải:

Bài 6 trang 75 sách giáo khoa Toán 7 Chân trời sáng tạo tập 1

Vẽ hai góc kề bù \(\widehat {xOy},\widehat {yOx'}\), biết \(\widehat {xOy} = 120^\circ \). Gọi Oz là tia phân giác của \(\widehat {xOy}\), Oz’ là tia phân giác của \(\widehat {yOx'}\). Tính \(\widehat {zOy},\widehat {yOz'},\widehat {zOz'}\)

Lời giải:

 

Vì Oz là tia phân giác của \(\widehat {xOy}\) nên \(\widehat {xOz} = \widehat {zOy} = \frac{1}{2}.\widehat {xOy} = \frac{1}{2}.120^\circ  = 60^\circ \)

Vì Oz’ là tia phân giác của \(\widehat {yOx'}\) nên \(\widehat {x'Oz'} = \widehat {yOz'} = \frac{1}{2}.\widehat {yOx'} = \frac{1}{2}.60^\circ  = 30^\circ \)

Vì \(\widehat {zOy} + \widehat {yOz'} = \widehat {zOz'} \Rightarrow 60^\circ  + 30^\circ  = \widehat {zOz'} \Rightarrow \widehat {zOz'} = 90^\circ \)

Vậy \(\widehat {zOy} = 60^\circ ,\widehat {yOz'} = 30^\circ ,\widehat {zOz'} = 90^\circ \)

Chú ý:

2 tia phân giác của 2 góc kề bù thì vuông góc với nhau

Bài 7 trang 75 sách giáo khoa Toán 7 Chân trời sáng tạo tập 1

Vẽ góc bẹt \(\widehat {xOy}\). Vẽ tia phân giác Oz của góc đó. Vẽ tia phân giác Ot của \(\widehat {xOz}\). Vẽ tia phân giác Ov của \(\widehat {zOy}\) . Tính \(\widehat {tOv}\)

Lời giải:

 

Vì Oz là tia phân giác của \(\widehat {xOy}\) nên \(\widehat {xOz} = \widehat {zOy} = \frac{1}{2}.\widehat {xOy}\) = \(\frac{1}{2}.180^\circ  = 90^\circ \)

Vì Ot là tia phân giác của \(\widehat {xOz}\) nên \(\widehat {xOt} = \widehat {tOz} = \frac{1}{2}\widehat {xOz} = \frac{1}{2}.90^\circ  = 45^\circ \)

Vì Ov là tia phân giác của \(\widehat {zOy}\) nên \(\widehat {yOv} = \widehat {vOz} = \frac{1}{2}\widehat {zOy} = \frac{1}{2}.90^\circ  = 45^\circ \)

Mà \(\widehat {tOz} + \widehat {zOv} = \widehat {tOv} \Rightarrow 45^\circ  + 45^\circ  = \widehat {tOv} \Rightarrow \widehat {tOv} = 90^\circ \)

Vậy \(\widehat {tOv} = 90^\circ \)

Giaibaitap.me

Góp ý - Báo lỗi

Vấn đề em gặp phải là gì ?

Hãy viết chi tiết giúp Giaibaitap.me

Bài giải mới nhất

Bài giải mới nhất các môn khác