Trang chủ
Bình chọn:
5 trên 1 phiếu

Giải sách bài tập Toán 7

CHƯƠNG III. QUAN HỆ GIỮA CÁC YẾU TỐ TRONG TAM GIÁC. CÁC ĐƯỜNG ĐỒNG QUY CỦA TAM GIÁC

Giải bài tập trang 49 bài 7 tính chất trung trực của một đoạn thẳng Sách Bài Tập (SBT) Toán lớp 7 tập 2. Câu 7.4: Trong tam giác ABC, hai đường trung trực của hai cạnh AB và AC cắt nhau tại điểm D nằm trên cạnh BC. Chứng minh rằng...

Câu 7.4 trang 49 Sách Bài Tập (SBT) Toán lớp 7 tập 2

Trong tam giác ABC, hai đường trung trực của hai cạnh AB và AC cắt nhau tại điểm D nằm trên cạnh BC. Chứng minh rằng:

a) D là trung điểm của cạnh BC.

b) \(\widehat A = \widehat B + \widehat C\)      

Giải

a) Vì ba đường trung trực của tam giác đồng quy nên D thuộc đường trung trực của cạnh BC. Mặt khác đường trung trực của cạnh BC đi qua trung điểm của BC nên D là trung điểm của cạnh BC.

b) Ta có ∆DEB = ∆DEA(c.g.c) nên \(\widehat B = \widehat {{A_1}}\). Tương tự \(\widehat C = \widehat {{A_2}}\).

Suy ra \(\widehat A = \widehat {{A_1}} + \widehat {{A_2}} = \widehat B + \widehat C\)

Câu 7.5 trang 49 Sách Bài Tập (SBT) Toán lớp 7 tập 2

Chứng minh rằng nếu trong tam giác ABC có hai cạnh AB và AC không bằng nhau thì đường trung tuyến xuất phát từ đỉnh A không vuông góc với BC.

Giải

Vì AM là đường trung tuyến của tam giác ABC nên M là trung điểm của cạnh BC.

Giả sử \(AM \bot BC\). Khi đó AM là đường trung trực của đoạn thẳng BC. Suy ra A = AC. Điều này mâu thuẫn với giả thiết AB # AC. Vậy trung tuyến AM không vuông góc với BC.

Câu 7.6 trang 49 Sách Bài Tập (SBT) Toán lớp 7 tập 2

Cho đường thẳng d và hai điểm A, B nằm về một phía của d sao cho AB không vuông góc với d. Hãy tìm trên d một điểm M sao cho \(\left| {MA - MB} \right|\) có giá trị nhỏ nhất.

Giải

Ta có \(\left| {MA - MB} \right| \ge 0\) với một điểm M tùy ý và \(\left| {MA - MB} \right| = 0\) chỉ với các điểm M mà MA = MB, tức là chỉ với các điểm M nằm trên đường trung trực của đoạn thẳng AB.

Mặt khác M phải thuộc d. Vậy M là giao điểm của đường thẳng d và đường trung trực của đoạn thẳng AB. Có giao điểm này vì AB không vuông góc với d.

Tóm lại: Khi M là giao điểm của d và đường trung trực của đoạn thẳng AB thì \(\left| {MA - MB} \right|\) đạt giá trị nhỏ nhất và bằng 0.

Giaibaitap.me

Góp ý - Báo lỗi

Vấn đề em gặp phải là gì ?

Hãy viết chi tiết giúp Giaibaitap.me