Trang chủ
Loigiaihay.com 2025

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết
Bình chọn:
4.9 trên 7 phiếu

Giải bài tập Toán 10

CHƯƠNG IV. BẤT ĐẲNG THỨC. BẤT PHƯƠNG TRÌNH

Giải bài tập trang 99 bài 4 Bất phương trình bậc nhất hai ẩn Sách giáo khoa (SGK) Toán 10. Câu 1: Tập nghiệm của bất phương trình là...

Bài 1 trang 99 SGK đại số 10

a) \(- x + 2 + 2(y - 2) < 2(1 - x)\);                

b) \(3(x - 1) + 4(y - 2) < 5x - 3\).

Giải

a) \(- x + 2 + 2(y - 2) < 2(1 - x) \Leftrightarrow  y < -\frac{x}{2}+2.\)

Tập nghiệm của bất phương trình là: 

\(T = \left\{ {(x;y)|x \in\mathbb R;y <  - {x \over 2} + 2} \right\}\)

Để biểu diễn tập nghiệm \(T\) trên mặt phẳng tọa độ, ta thực hiện:

+ Vẽ đường thẳng \((d): y= -\frac{x}{2}+2.\)

+ Lấy điểm gốc tọa độ \(O(0; 0)\) \(\notin (d)\).

Ta thấy: \(0 < -\frac{1}{2} - 0 + 2\). Chứng tỏ \((0; 0)\) là một nghiệm của bất phương trình. Vậy nửa mặt phẳng bờ là đường thẳng \((d)\) (không kể bờ) chứa gốc \(O(0; 0)\) là tập hợp các điểm biểu diễn tập nghiệm của bất phương trình đã cho (nửa mặt phẳng không bị gạch sọc)

b) \(3(x - 1) + 4(y - 2) < 5x - 3\)

\(\eqalign{
& \Leftrightarrow 3x - 3 + 4y - 8 - 5x + 3 < 0 \cr
& \Leftrightarrow - 2x + 4y - 8 < 0 \cr
& \Leftrightarrow x - 2y + 4 > 0 \cr} \)

Tập nghiệm của bất phương trình là: 

\(T = \left\{ {(x;y)|x,y \in\mathbb R;x - 2y > 0} \right\}\)

+) Vẽ đường thẳng \((\Delta): x-2y+4=0\)

+) Lấy điểm \(O(0;0)\) \(\notin (\Delta)\)

Ta thấy \(0-2.0+4=4>0\). Chứng tở \((0;0)\) là một nghiệm của bất phương trình. Vậy nửa mặt phẳng bờ là đường thẳng \((\Delta)\) (không kể bờ) chứa gốc \(O(0; 0)\) là tập hợp các điểm biểu diễn tập nghiệm của bất phương trình đã cho (nửa mặt phẳng không bị gạch sọc)

 


Bài 2 trang 99 SGK đại số 10

 Biểu diễn hình học tập nghiệm của các hệ bất phương trình hai ẩn sau.

a) \(\left\{\begin{matrix} x-2y<0\\ x+3y>-2 \\ y-x<3; \end{matrix}\right.\)  

                      

b) \(\left\{\begin{matrix} \frac{x}{3}+\frac{y}{2}-1<0\\ x+\frac{1}{2}-\frac{3y}{2}\leq 2 \\ x\geq 0. \end{matrix}\right.\)

Giải

a) 

\(\left\{ \matrix{x - 2y < 0 \hfill \cr x + 3y > - 2 \hfill \cr y - x < 3 \hfill \cr} \right. \Leftrightarrow \left\{ {\matrix{{y > {1 \over {2x}}} \cr {y > - {1 \over 3}x - {2 \over 3}} \cr {y < x + 3} \cr} } \right.\)

Miền nghiệm của hệ bất phương trình là miền không bị gạch sọc ở hình bên dưới (không kể các bờ).

b) 

\(\left\{ {\matrix{{{x \over 3} + {y \over 2} - 1 < 0} \cr {x + {1 \over 2} - {{3y} \over 2} \le 2} \cr {x \ge 0} \cr} } \right. \Leftrightarrow {\rm{ }}\left\{ {\matrix{{y < - {2 \over 3}x + 2} \cr {y \ge {2 \over 3}x - 1} \cr {x \ge 0} \cr} } \right.\)

Miền nghiệm của hệ bất phương trình là miền tam giác \(ABC\) bao gồm cả các điểm trên cạnh \(AC\) và cạnh \(BC\) (không kể các điểm của cạnh \(AB\)).

 


Bài 3 trang 99 SGK đại số 10

Có ba nhóm máy \(A, B, C\) dùng để sản xuất ra hai loại sản phẩm I và II. Để sản xuất một đơn vị sản phẩm mỗi loại phải lần lượt dùng các máy thuộc các nhóm khác nhau. Số máy trong một nhóm và số máy của từng nhóm cần thiết để sản xuất ra một đơn vị sản phẩm thuộc mỗi loại được cho trong bảng sau:

Một đơn vị sản phẩm I lãi \(3\) nghìn đồng, một sản phẩm II lãi \(5\) nghìn đồng. Hãy lập phương án để việc sản xuất hai loại sản phẩm trên có lãi cao nhất.

Giải

Gọi \(x\) là số đơn vị sản phẩm loại I, \(y\) là số đơn vị sản phẩm loại II được nhà máy lập kế hoạch sản xuất. Khi đó số lãi nhà máy nhân được là \(P = 3x + 5y\) (nghìn đồng).

Các đại lượng \(x, y\) phải thỏa mãn các điều kiện sau:

(I) \(\left\{\begin{matrix} x\geq 0,y\geq 0\\ 2x-2y\leq 10 \\ 2y\leq 4 \\2x+4y\leq 12 \end{matrix}\right.\)

(II) \(\left\{\begin{matrix} x\geq 0,y\geq 0\\ y\leq 5-x \\ y\leq 2 \\y\leq-\frac{1}{2}x+3 \end{matrix}\right.\)

Miền nghiệm của hệ bất phương trình (II) là đa giác \(OABCD\) (kể cả biên).

Biểu thức \(F = 3x + 5y\) đạt giá trị lớn nhất khi \((x; y)\) là tọa độ đỉnh \(C\).

(Từ \(3x + 5y = 0 \Rightarrow y = -\frac{3}{5}x.\) Các đường thẳng qua các đỉnh của \(OABCD\) và song song với đường \(y = -\frac{3}{5}x\) cắt \(Oy\) tại điểm có tung độ lớn nhất là đường thẳng qua đỉnh \(C\)).

Phương trình hoành độ điểm \(C\): \(5 - x = -\frac{1}{2}x +3 \Leftrightarrow  x = 4\).

Suy ra tung độ điểm \(C\) là \(y_C= 5 - 4 = 1\). Tọa độ \(C(4; 1)\). Vậy trong các điều kiện cho phép của nhà máy, nếu sản xuất 4 đơn vị sản phẩm loại I và 1 đơn vị sản phẩm đơn vị loại II thì tổng số tiền lãi lớn nhất bằng:

                           \( F_C= 3.4 + 5.1 = 17\) nghìn đồng.

 

Giaibaitap.me

Góp ý - Báo lỗi

Vấn đề em gặp phải là gì ?

Hãy viết chi tiết giúp Giaibaitap.me

Bài giải mới nhất

Bài giải mới nhất các môn khác