Bài 1 trang 94 SGK Đại số 10
Xét dấu các biểu thức:
a) \(f(x) = (2x - 1)(x + 3)\);
b) \(f(x) = (- 3x - 3)(x + 2)(x + 3)\);
c)\( f(x) = \frac{-4}{3x+1}-\frac{3}{2-x};\)
d) \(f(x) = 4x^2– 1\).
Giải
a) Ta lập bảng xét dấu
Kết luận: \(f(x) < 0\) nếu \(- 3 < x < \frac{1}{2}\)
\(f(x) = 0\) nếu \(x = - 3\) hoặc \(x = \frac{1}{2}\)
\(f(x) > 0\) nếu \(x < - 3\) hoặc \(x > \frac{1}{2}\).
b) Ta lập bảng xét dấu
\( f(x) < 0\) nếu \(x ∈ (- 3; - 2) ∪ (- 1; +∞)\)
\(f(x) = 0\) với \(x = - 3\), \(x= - 2\), hoặc \(x= - 1\)
\( f(x) > 0\) với \(x ∈ (-∞; - 3) ∪ (- 2; - 1)\).
c) Ta có: \(f(x) = \frac{-4}{3x+1}-\frac{3}{2-x}=\frac{5x+11}{(3x+1)(x-2)}\)
Ta lập bảng xét dấu
\(f(x)\) không xác định nếu \(x = -\frac{1}{3}\) hoặc \(x = 2\)
\(f(x) < 0\) với \(x ∈ \left ( -\infty ;-\frac{11}{5} \right )\) ∪ \(\left ( -\frac{1}{3};2 \right )\)
\(f(x) > 0\) với \(x ∈ \left ( -\frac{11}{5};-\frac{1}{3} \right )∪ (2; +∞)\).
d) \(f(x) = 4x^2– 1 = (2x - 1)(2x + 1)\).
Ta lập bảng xét dấu
\(f(x) = 0\) với \(x = \pm \frac{1}{2}\)
\(f(x) < 0\) với \(x ∈ \left ( -\frac{1}{2};\frac{1}{2} \right )\)
\(f(x) > 0\) với \(x ∈ \left ( -\infty ;-\frac{1}{2} \right )∪ \left ( \frac{1}{2};+\infty \right ).\)
Bài 2 trang 94 sgk đại số 10
Giải các bất phương trình
a) \(\frac{2}{x-1}\leq \frac{5}{2x-1};\)
b) \(\frac{1}{x+1}<\frac{1}{(x-1)^{2}};\)
c) \(\frac{1}{x}+\frac{2}{x+4}<\frac{3}{x+3};\)
d) \(\frac{x^{2}-3x+1}{x^{2}-1}<1.\)
Giải
a) \(\frac{2}{x-1}\leq \frac{5}{2x-1}\)
\(\Leftrightarrow f(x) = -\frac{5}{2x-1}+\frac{2}{x-1}=\frac{-x+3}{(2x-1)(x-1)}\leq 0\).
Xét dấu của \(f(x)\) ta được bảng xét dấu:
Tập nghiệm của bất phương trình là:
\(T = \left ( \frac{1}{2};1 \right ) ∪ [3; +∞)\).
b) \(\frac{1}{x+1}<\frac{1}{(x-1)^{2}}\)
\( \Leftrightarrow f(x) = \frac{1}{x+1}-\frac{1}{(x-1)^{2}} = \frac{x(x-3)}{(x+1)(x-1)^{2}}< 0\).
\(f(x)\) không xác định với \(x = ± 1\).
Xét dấu của \(f(x)\) ta được bảng xét dấu:
Tập nghiệm của bất phương trình là:
\(T = (-∞; - 1) ∪ (0; 1) ∪ (1; 3)\).
c) \(\frac{1}{x}+\frac{2}{x+4}<\frac{3}{x+3} \Leftrightarrow f(x) = \frac{1}{x}+\frac{2}{x+4}-\frac{3}{x+3}\)
\(= \frac{x+12}{x(x+3)(x+4)} < 0\).
Bảng xét dấu:
Tập nghiệm của bất phương trình là: \(T = \left ( -12;-4 \right ) ∪ (-3; 0)\).
d) \(\frac{x^{2}-3x+1}{x^{2}-1}<1\)
\( \Leftrightarrow f(x) = {{{x^2} - 3x + 1} \over {{x^2} - 1}} - 1 = {{{x^2} - 3x + 1 - {x^2} + 1} \over {{x^2} - 1}} = {{ - 3x + 2} \over {(x - 1)(x + 1)}} < 0\)
Bảng xét dấu:
Tập nghiệm của bất phương trình là: \(T = \left ( -1;\frac{2}{3} \right ) ∪ (1; +∞)\).
Bài 3 trang 94 sgk đại số 10
Giải các bất phương trình
a) \(|5x - 4| ≥ 6\);
b) \(\left | \frac{-5}{x+2} \right |<\left | \frac{10}{x-1} \right |.\)
Giải
a) \(|5x - 4| ≥ 6\)
\(\eqalign{
& \Leftrightarrow {(5x - 4)^2} \ge {6^2} \Leftrightarrow {(5x - 4)^2} - {6^2} \ge 0 \cr
& \Leftrightarrow (5x - 4 - 6)(5x - 4 + 6) \ge 0 \cr
& \Leftrightarrow (5x - 10)(5x + 2) \ge 0 \cr} \)
Bảng xét dấu:
Từ bảng xét dấu cho tập nghiệm của bất phương trình:
\(T =\left( { - \infty ; - {2 \over 5}} \right] ∪ [2; +∞)\).
b) \(\left | \frac{-5}{x+2} \right |<\left |\frac{10}{x-1} \right |\)
\(\eqalign{
& \Leftrightarrow {5 \over {|x + 2|}} < {{10} \over {|x - 1|}} \Leftrightarrow {1 \over {|x + 2|}} < {2 \over {|x - 1|}} \cr
& \Leftrightarrow 2|x + 2| - |x - 1| > 0 \text{ } (1)\cr} \)
Bảng xét dấu:
Tập nghiệm của bất phương trình là: \(T = (-∞; - 5) ∪ (- 1; 1) ∪ (1; +∞)\).
Giaibaitap.me
Giải bài tập trang 99 bài 4 Bất phương trình bậc nhất hai ẩn Sách giáo khoa (SGK) Toán 10. Câu 1: Tập nghiệm của bất phương trình là...
Giải bài tập trang 105 bài 5 Dấu của tam thức bậc hai Sách giáo khoa (SGK) Toán 10. Câu 1: Xét dấu các tam thức bậc hai...
Giải bài tập trang 106 bài ôn tập chương IV - bất đẳng thức, bất phương trình Sách giáo khoa (SGK) Toán 10. Câu 1: Sử dụng dấu bất đẳng thức để viết các mệnh đề sau...
Giải bài tập trang 106 bài ôn tập chương IV - bất đẳng thức, bất phương trình Sách giáo khoa (SGK) Toán 10. Câu 5: Trên cùng một mặt phẳng tọa độ, hãy vẽ đồ thị hai hàm số...