Trang chủ
Loigiaihay.com 2025

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết
Bình chọn:
4.9 trên 7 phiếu

Giải bài tập Toán 10

CHƯƠNG I. VECTƠ

Giải bài tập trang 17 bài 3 Tích của vectơ với một số Sách giáo khoa (SGK) Hình học 10. Câu 1: Cho hình bình hành \(ABCD\). Chứng mỉnh rằng...

Bài 1 trang 17 sgk toán hình học lớp 10

Cho hình bình hành \(ABCD\). Chứng mỉnh rằng:

 \(\overrightarrow{AB} + \overrightarrow{AC}+ \overrightarrow{AD}= 2\overrightarrow{AC}\).

Giải

 \(\overrightarrow{AB} + \overrightarrow{AC}+ \overrightarrow{AD}= \overrightarrow{AB}  + \overrightarrow{AD}+ \overrightarrow{AC}\)

Vì \(ABCD\) là hình bình hành nên

\(\overrightarrow{AB}+ \overrightarrow{AD}= \overrightarrow{AC}\) (quy tắc hình bình hành của tổng)

\(\Rightarrow \overrightarrow{AB}+ \overrightarrow{AC} + \overrightarrow{AD}=   \overrightarrow{AC} +\overrightarrow{AC} =2\overrightarrow{AC}\)

 







Bài 2 trang 17 sgk hình học lớp 10

Cho \(AK\) và \(BM\) là hai trung tuyến của tam giác \(ABC\). Hãy phân tích các vectơ \(\overrightarrow {AB} ,\overrightarrow {BC} ,\overrightarrow {AC} \) theo hai vectơ sau \(\overrightarrow u  = \overrightarrow {AK} ,\overrightarrow v  = \overrightarrow {BM} \)

Giải

Gọi \(G\) là giao điểm của \(AK, BM\) thì \(G\) là trọng tâm của tam giác.

Ta có : 

\(\eqalign{
& \overrightarrow {AG} = {2 \over 3}\overrightarrow {AK} \Rightarrow \overrightarrow {AG} = {2 \over 3}\overrightarrow u \cr
& \overrightarrow {GB} = - \overrightarrow {BG} = - {2 \over 3}\overrightarrow {BM} = - {2 \over 3}\overrightarrow v \cr} \)

Theo quy tắc \(3\) điểm đối với tổng vec tơ:

\(\overrightarrow {AB}  = \overrightarrow {AG}  + \overrightarrow {GB}  \Rightarrow \overrightarrow {AB}  = {2 \over 3}\overrightarrow u  - {2 \over 3}\overrightarrow v  = {2 \over 3}(\overrightarrow u  - \overrightarrow v )\)

\(AK\) là trung tuyến thuộc cạnh \(BC\) nên

\(\overrightarrow {AB}  + \overrightarrow {AC}  = 2\overrightarrow {AK}  \Rightarrow {2 \over 3}\overrightarrow u  - {2 \over 3}\overrightarrow v  + \overrightarrow {AC}  = 2\overrightarrow u \)

\( \Rightarrow \overrightarrow {AC}  = {4 \over 3}\overrightarrow u  + {2 \over 3}\overrightarrow v  \Rightarrow \overrightarrow {CA}  =  - {4 \over 3}\overrightarrow u  - {2 \over 3}\overrightarrow v \)

\(BM\) là trung tuyến thuộc đỉnh \(B\) nên 

\(\eqalign{
& \overrightarrow {BA} + \overrightarrow {BC} = 2\overrightarrow {BM} \Rightarrow - \overrightarrow {AB} + \overrightarrow {BC} = 2\overrightarrow v \cr
& \Rightarrow \overrightarrow {BC} = 2\overrightarrow v + {2 \over 3}\overrightarrow u - {2 \over 3}\overrightarrow v = {2 \over 3}\overrightarrow u + {4 \over 3}\overrightarrow v \cr} \)

 


Bài 3 trang 17 sgk hình học lớp 10

 Trên đường thẳng chứa cạnh \(BC\) của tam giác \(ABC\) lấy một điểm \(M\) sao cho \(\overrightarrow {MB}  = 3\overrightarrow {MC} \). Hãy phân tích vectơ  \(\overrightarrow {AM} \) theo hai vectơ \(\overrightarrow u  = \overrightarrow {AB} ;\overrightarrow v  = \overrightarrow {AC} \)

Giải

Trước hết ta có 

\(\eqalign{
& \overrightarrow {MB} = 3\overrightarrow {MC} \Rightarrow \overrightarrow {MB} = 3.(\overrightarrow {MB} + \overrightarrow {BC} ) \cr
& \Rightarrow \overrightarrow {MB} = 3\overrightarrow {MB} + 3\overrightarrow {BC} \cr
& \Rightarrow - 2\overrightarrow {MB} = 3\overrightarrow {BC} \cr
& \Rightarrow \overrightarrow {BM} = {3 \over 2}\overrightarrow {BC} \cr} \)

mà \(\overrightarrow {BC}  = \overrightarrow {AC}  - \overrightarrow {AB} \) nên \(\overrightarrow {BM}  = {3 \over 2}(\overrightarrow {AC}  - \overrightarrow {AB} )\)

Theo quy tắc \(3\) điểm, ta có

\(\eqalign{
& \overrightarrow {AM} = \overrightarrow {AB} + \overrightarrow {BM} = \overrightarrow {AB} + {3 \over 2}(\overrightarrow {AC} - \overrightarrow {AB} ) = - {1 \over 2}\overrightarrow {AB} + {3 \over 2}\overrightarrow {AC} \cr
&\text{ Hay }  \overrightarrow {AM} = - {1 \over 2}\overrightarrow u + {3 \over 2}\overrightarrow v \cr} \)

 


Bài 4 trang 17 sgk hình học lớp 10

Gọi \(AM\) là trung tuyến của tam giác \(ABC\)  và \(D\) là trung điểm của đạn \(AM\). Chứng minh rằng:

a) \(2\overrightarrow {DA}  + \overrightarrow {DB}  + \overrightarrow {DC}  = \overrightarrow 0 \)

b) \(2\overrightarrow {OA}  + \overrightarrow {OB}  + \overrightarrow {OC}  = 4\overrightarrow {OD} \), với \(O\) là điểm tùy ý.

Giải

a) Vì \(M\) là trung điểm của \(BC\) nên:

Ta có:

\(\overrightarrow {DB}  + \overrightarrow {DC}  = 2\overrightarrow {DM} \)

Mặt khác, do \(D\) là trung điểm của đoạn \(AM\) nên \(\overrightarrow {DM}  =  - \overrightarrow {DA} \)

Khi đó: \(2\overrightarrow {DA}  + \overrightarrow {DB}  + \overrightarrow {DC}  = 2\overrightarrow {DA}  + 2\overrightarrow {DM}  = 2\left( {\overrightarrow {DA}  + \overrightarrow {DM} } \right) = \overrightarrow 0 \)

b) Ta có:

\(\eqalign{
& 2\overrightarrow {OA} + \overrightarrow {OB} + \overrightarrow {OC} = 4\overrightarrow {OD} \cr
& \Leftrightarrow 2\left( {\overrightarrow {OA} - \overrightarrow {OD} } \right) + \left( {\overrightarrow {OB} - \overrightarrow {OD} } \right) + \left( {\overrightarrow {OC} - \overrightarrow {OD} } \right) = \overrightarrow 0 \cr
& \Leftrightarrow 2\overrightarrow {DA} + \overrightarrow {DB} + \overrightarrow {DC} = \overrightarrow 0 \cr} \) (Đúng theo câu a) 

Vậy: \(2\overrightarrow {OA}  + \overrightarrow {OB}  + \overrightarrow {OC}  = 4\overrightarrow {OD} \), với \(O\) là điểm tùy ý

 

Giaibaitap.me

Góp ý - Báo lỗi

Vấn đề em gặp phải là gì ?

Hãy viết chi tiết giúp Giaibaitap.me

Bài giải mới nhất

Bài giải mới nhất các môn khác