Trang chủ
Loigiaihay.com 2025

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết
Bình chọn:
4 trên 10 phiếu

Giải bài tập Toán 9

CHƯƠNG III - GÓC VỚI ĐƯỜNG TRÒN

Giải bài tập trang 89, 90 bài 7 tứ giác nội tiếp SGK Toán lớp 9 tập 2. Câu 57: Trong các hình sau, hình nào nội tiếp được một đường tròn...

Bài 57 trang 89 sgk Toán lớp 9 tập 2

Bài 57. Trong các hình sau, hình nào nội tiếp được một đường tròn:

Hình bình hành, hình chữ nhật, hình vuông, hình thang, hình thang vuông, hình thang cân ? Vì sao?

Hướng dẫn giải:

Hình bình hành nói chung không nội tiếp được đường tròn vì tổng hai góc đối diện không bằng \(180^0\).Trường hợp riêng của hình bình hành là hình chữ nhật (hay hình vuông) thì nội tiếp đường tròn vì tổng hai góc đối diện là \(90^0\)  + \(90^0\) = \(180^0\)

Hình thang nói chung, hình thang vuông không nội tiếp được đường tròn.

Hình thang cân \(ABCD (BC= AD)\) có hai góc ở mỗi đáy bằng nhau

\(\widehat{A}\) = \(\widehat{B}\), \(\widehat{C}\) = \(\widehat{D}\); mà \(\widehat{A}\) +\(\widehat{D}\) = \(180^0\)  (hai góc trong cùng phía tạo bởi cát tuyến \(AD\) với \(AD // CD\)),suy ra \(\widehat{A}\) +\(\widehat{C}\) =\(180^0\). Vậy hình thang cân luôn có tổng hai góc đối diện bằng \(180^0\)nên nội tiếp được đường tròn

 


Bài 58 trang 90 sgk Toán lớp 9 tập 2

Bài 58. Cho tam giác đều \(ABC\). Trên nửa mặt phẳng bờ \(BC\) không chứa đỉnh \(A\), lấy điểm \(D\) sao cho \(DB = DC\) và \(\widehat{DCB}\) =\(\frac{1}{2}\) \(\widehat{ACB}\).

a) Chứng minh \(ABDC\) là tứ giác nội tiếp.

b) Xác định tâm của đường tròn đi qua bốn điểm \(A, B, D, C\).

Hướng dẫn giải:

a) Theo giả thiết, \(\widehat{DCB}\) =\(\frac{1}{2}\) \(\widehat{ACB}\) = \(\frac{1}{2}\) .\(60^0\)= \(30^0\)  

 \(\widehat{ACD}\) = \(\widehat{ACB}\) + \(\widehat{BCD}\) (tia \(CB\) nằm giữa hai tia \(CA, CD\))

\(\Rightarrow\)\(\widehat{ACD}\) = \(60^0\) + \(30^0\)=\(90^0\)  (1)

Do \(DB = CD\) nên ∆BDC cân => \(\widehat{DBC}\) = \(\widehat{DCB}\) =  30o 

Từ đó \(\widehat{ABD}\) = \(30^0\)+\(60^0\)=\(90^0\) (2)

Từ (1) và (2) có \(\widehat{ACD}\) + \(\widehat{ABD}\) = \(180^0\) nên tứ giác \(ABDC\) nội tiếp được.

b) Vì \(\widehat{ABD}\)  = \(90^0\)nên \(AD\) là đường kính của đường tròn ngoại tiếp tứ giác \(ABDC\), do đó tâm đường tròn ngoại tiếp tứ giác \(ABDC\) là trung điểm \(AD\).

 


Bài 59 trang 90 sgk Toán lớp 9 tập 2

Bài 59. Cho hình bình hành \(ABCD\). Đường tròn đi qua ba đỉnh \(A, B, C\) cắt đường thẳng \(CD\) tại \(P\) khác \(C\). Chứng minh \(AP = AD\)

Hướng dẫn giải:

Do tứ giác \(ABCP\) nội tiếp nên ta có:

             \(\widehat{BAP}\) + \(\widehat{BCP}\) = \(180^0\)        (1)

Ta lại có: \(\widehat{ABC}\)+ \(\widehat{BCP}\) =  \(180^0\)       (2)

(hai góc trong cùng phía tạo bởi cát tuyến \(CB\) và \(AB // CD\))

Từ (1) và (2) suy ra: \(\widehat{BAP}\) = \(\widehat{ABC}\)

Vậy \(ABCP\) là hình thang cân, suy ra \(AP = BC\)      (3)

nhưng \(BC = AD\) (hai cạnh đối đỉnh của hình bình hành)  (4)

Từ (3) và (4) suy ra \(AP = AD\).

 


Bài 60 trang 90 sgk Toán lớp 9 tập 2

Bài 60. Xem hình 48. Chứng minh \(QR // ST\).

Hướng dẫn giải:

Kí hiệu như hình vẽ.

Ta có tứ giác \(ISTM\) nội tiếp đường tròn nên:

      \(\widehat{S_{1}}\) + \(\widehat{M}\) =\(180^0\)

Mà \(\widehat{M_{1}}\) + \(\widehat{M_{3}}\) = \(180^0\)(kề bù)

nên suy ra \(\widehat{S_{1}}\) = \(\widehat{M_{3}}\)                         (1)

Tương tự từ các tứ giác nội tiếp \(IMPN\) và \(INQS\) ta được 

    \(\widehat{M_{3}}\)  = \(\widehat{N_{4}}\)                                   (2)

    \(\widehat{N_{4}}\) =  \(\widehat{R_{2}}\)                                    (3)

Từ (1), (2), (3) suy ra \(\widehat{S_{1}}\) =  \(\widehat{R_{2}}\) (hai góc ở vị trí so le trong).          

Do đó \(QR // ST\)

Giaibaitap.me

Góp ý - Báo lỗi

Vấn đề em gặp phải là gì ?

Hãy viết chi tiết giúp Giaibaitap.me

Bài giải mới nhất

Bài giải mới nhất các môn khác