Bài 30 trang 124 - Sách giáo khoa toán 9 tập 2
Bài 30 Nếu thể tích của một hình cầu là \(113\frac{1}{7}\) thì trong các kết quả sau đây, kết quả nào là bán kính của nó (lấy \(\pi = {{22} \over 7}\))?
(A) \(2 cm\) (B) \(3 cm\) (C) \(5 cm\) (D) \(6 cm\) ;
(E) Một kết quả khác.
Giải:
Từ công thức: \(V = {4 \over 3}\pi {R^3} \Rightarrow R = {{3V} \over {4\pi }} \Rightarrow R = 27\)
Suy ra: \(R = 3\)
Vậy chọn B.
Bài 31 trang 124 - Sách giáo khoa toán 9 tập 2
Bài 31 Hãy điền vào các ô trống ở bảng sau:
Giải
ÁP dụng công thức tính diện tích mặt cầu: \(S = 4\pi {R^2}\)
và công thức tính thể tích mặt cầu: \(V = {4 \over 3}\pi {R^3}\)
Thay bán kính mặt cầu vào ta tính được bảng sau:
Bài 32 trang 125 - Sách giáo khoa toán 9 tập 2
Bài 32 Một khối gỗ dạng hình trụ, bán kính đường tròn là \(r\), chiều cao \(2r\) (đơn vị: cm)
Người ta khoẻt rỗng hai nửa hình cầu như hình 108. Hãy tính diện tích bề mặt của khối gỗ còn lại(diện tích cả ngoài lần trong).
Giải:
Diện tích phần cần tính gồm diện tích xung quanh hình trụ bán kính đường tròn đáy là \(r\) (cm), chiều cao là \(2r\) (cm) và một mặt cầu bán kính \(r\) (cm).
Diện tích xung quanh của hình trụ:
\(S_{xq} = 2 \pi r h = 2 \pi r. 2 r= 4 \pi r^2\) (\(cm^2\))
Diện tích mặt cầu:
\(S= 4 \pi r^2\)(\(cm^2\))
Diện tích cần tính là: \(4 \pi r^2\) + \(4 \pi r^2\) = \(8 \pi r^2\) (\(cm^2\)).
Bài 33 trang 125 - Sách giáo khoa toán 9 tập 2
Bài 33 Dụng cụ thể thao
Các loại bóng cho trong bảng đều có dạng hình cầu. Hãy điền vào các ô trống ở bảng sau (làm tròn kết quả đến chữ số thập phân thứ hai):
Giải:
Dòng thứ nhất: Từ \(C = \pi .d \Rightarrow d = {C \over \pi } = {\rm{ }}{{23} \over {{{22} \over 7}}} = 7,32\)
Dòng thứ hai: Áp dụng công thức \(C = π.d\), thay số vào ta được
\(d = 42,7mm \Rightarrow C = {{22} \over 7}.42,7 = 134,08mm\)
\(d = 6,6cm \Rightarrow C = {\rm{ }}{{22} \over 7}.6,6 = 20,41cm\)
\(d = 40mm \Rightarrow C = {\rm{ }}{{22} \over 7}.40 = 125,6mm\)
\(d = 61mm \Rightarrow C = {{22} \over 7}.61 = 191,71mm\)
Dòng thứ ba: ÁP dụng công thức \(S{\rm{ }} = {\rm{ }}\pi {d^2}\), thay số vào ta được:
\(d = 42,7mm \Rightarrow S = {{22} \over 7}.42,{7^2} \approx 5730,34(m{m^2})\)
\({\rm{ }} \approx 57,25(c{m^2})\)
\(d = 6,5cm \Rightarrow S = {{22} \over 7}.6,{5^2} = 132,65(c{m^2})\)
\(d = 40mm \Rightarrow S = {{22} \over 7}{.40^2} = 5024(m{m^2})\)
\(d = 61mm \Rightarrow S = {{22} \over 7}.612 = 11683,94(m{m^2})\)
Dòng thứ 4: áp dụng công thức \(V = {4 \over 3}\pi {R^3}\) , thay số vào ta được các kết quả ghi vào bảng dưới đây:
Giaibaitap.me
Giải bài tập trang 125, 126 bài 3 hình cầu, diện tích hình cầu và thể tích hình cầu SGK toán 9 tập 2. Câu 34: Hãy tính diện tích mặt khinh khí cầu...
Giải bài tập trang 129 bài ôn tập chương IV SGK Toán 9 tập 2. Câu 38: Hãy tính thể tích , diện tích bề mặt một chi tiết máy theo kích thước đã cho trên hình 114...
Giải bài tập trang 130, 131 bài ôn tập chương IV SGK Toán 9 tập 2. Câu 42: Hãy tính thể tích các hình dưới đây theo kích thước đã cho...