Câu 30 trang 56 Sách bài tập (SBT) Toán 9 tập 2
Tính gần đúng nghiệm của phương trình (làm tròn đến chữ số thập phân thứ hai):
a) \(16{x^2} - 8x + 1 = 0\)
b) \(6{x^2} - 10x - 1 = 0\)
c) \(5{x^2} + 24x + 9 = 0\)
d) \(16{x^2} - 10x + 1 = 0\)
Giải
a)
\(\eqalign{
& 16{x^2} - 8x + 1 = 0 \cr
& \Delta ' = {\left( { - 4} \right)^2} - 16.1 = 16 - 16 = 0 \cr} \)
Phương trình có nghiệm số kép: \({x_1} = {x_2} = {4 \over {16}} = {1 \over 4} = 0,25\)
b) \(6{x^2} - 10x - 1 = 0\)
\(\eqalign{
& \Delta ' = {\left( { - 5} \right)^2} - 6.\left( { - 1} \right) = 25 + 6 = 31 > 0 \cr
& \sqrt {\Delta '} = \sqrt {31} \cr
& {x_1} = {{5 + \sqrt {31} } \over 6} \approx 1,76 \cr
& {x_2} = {{5 - \sqrt {31} } \over 6} \approx - 0,09 \cr} \)
c)
\(\eqalign{
& 5{x^2} + 24x + 9 = 0 \cr
& \Delta ' = {\left( {12} \right)^2} - 5.9 = 144 - 45 = 99 > 0 \cr
& \sqrt {\Delta '} = \sqrt {99} = 3\sqrt {11} \cr
& {x_1} = {{ - 12 + 3\sqrt {11} } \over 5} \approx - 0,41 \cr
& {x_2} = {{ - 12 - 3\sqrt {11} } \over 5} \approx - 4,39 \cr} \)
d)
\(\eqalign{
& 16{x^2} - 10x + 1 = 0 \cr
& \Delta ' = {\left( { - 5} \right)^2} - 16.1 = 25 - 16 = 9 > 0 \cr
& \sqrt {\Delta '} = \sqrt 9 = 3 \cr
& {x_1} = {{5 + 3} \over {16}} = {8 \over {16}} = 0,5 \cr
& {x_2} = {{5 - 3} \over {16}} = {2 \over {16}} = {1 \over 8} = 0,125 \cr} \)
Câu 31 trang 56 Sách bài tập (SBT) Toán 9 tập 2
Với giá trị nào của x thì giá trị của hai hàm số bằng nhau:
a) \(y = {1 \over 3}{x^2}\) và \(y = 2x - 3\)
b) \(y = - {1 \over 2}{x^2}\) và \(y = x - 8\)?
Giải
a) \({1 \over 3}{x^2} = 2x - 3 \Leftrightarrow {x^2} - 6x + 9 = 0\)
\(\Delta ' = {\left( { - 3} \right)^2} - 1.9 = 9 - 9 = 0\)
Phương trình có nghiệm số kép: \({x_1} = {x_2} = 3\)
Vậy với x = 3 thì hàm số \(y = {1 \over 3}{x^2}\) và hàm số y = 2x – 3 có giá trị bằng nhau.
b) \( - {1 \over 2}{x^2} = x - 8 \Leftrightarrow {x^2} + 2x - 16 = 0\)
\(\eqalign{
& \Delta ' = {1^2} - 1.\left( { - 16} \right) = 1 + 16 = 17 > 0 \cr
& \sqrt {\Delta '} = \sqrt {17} \cr
& {x_1} = {{ - 1 + \sqrt {17} } \over 1} = - 1 + \sqrt {17} \cr
& {x_2} = {{ - 1 - \sqrt {17} } \over 1} = - 1 - \sqrt {17} \cr} \)
Vậy với \(x = \sqrt {17} - 1\) hoặc \(x = - \left( {1 + \sqrt {17} } \right)\) thì giá trị của hai hàm số \(y = - {1 \over 2}{x^2}\) và y = x – 8 bằng nhau.
Câu 32 trang 56 Sách bài tập (SBT) Toán 9 tập 2
Với giá trị nào của m thì:
a) Phương trình \(2{x^2} - {m^2}x + 18m = 0\) có một nghiệm x = -3.
b) Phương trình \(m{x^2} - x - 5{m^2} = 0\) có một nghiệm x = -2?
Giải
a) x = -3 là nghiệm của phương trình \(2{x^2} - {m^2}x + 18m = 0\) (1)
Ta có:
\(\eqalign{
& 2.{\left( { - 3} \right)^2} - {m^2}\left( { - 3} \right) + 18m = 0 \cr
& \Leftrightarrow 3{m^2} + 18m + 18 = 0 \cr
& \Leftrightarrow {m^2} + 6m + 6 = 0 \cr
& \Delta ' = {3^2} - 1.6 = 9 - 6 = 3 > 0 \cr
& \sqrt {\Delta '} = \sqrt 3 \cr
& {m_1} = {{ - 3 + \sqrt 3 } \over 1} = - 3 + \sqrt 3 \cr
& {m_2} = {{ - 3 - \sqrt 3 } \over 1} = - 3 - \sqrt 3 \cr} \)
Vậy với \(m = - 3 - \sqrt 3 \) hoặc \(m = - 3 - \sqrt 3 \) thì phương trình (1) có nghiệm x = -3
b) x = -2 là nghiệm của phương trình \(m{x^2} - x - 5{m^2} = 0\) (2)
Ta có:
\(\eqalign{
& m{\left( { - 2} \right)^2} - \left( { - 2} \right) - 5{m^2} = 0 \cr
& \Leftrightarrow 5{m^2} - 4m - 2 = 0 \cr
& \Delta ' = {\left( { - 2} \right)^2} - 5.\left( { - 2} \right) = 4 + 10 = 14 > 0 \cr
& \sqrt {\Delta '} = \sqrt {14} \cr
& {m_1} = {{2 + \sqrt {14} } \over 5} \cr
& {m_2} = {{2 - \sqrt {14} } \over 5} \cr} \)
Vậy \(m = {{2 + \sqrt {14} } \over 5}\) hoặc \(m = {{2 - \sqrt {14} } \over 5}\) thì phương trình (2) có nghiệm x = -2
Câu 33 trang 56 Sách bài tập (SBT) Toán 9 tập 2
Với giá trị nào của m thì phương trình có hai nghiệm phân biệt:
a) \({x^2} - 2\left( {m + 3} \right)x + {m^2} + 3 = 0\)
b) \(\left( {m + 1} \right){x^2} + 4mx + 4m - 1 = 0\)
Giải
a) Phương trình \({x^2} - 2\left( {m + 3} \right)x + {m^2} + 3 = 0\) có hai nghiệm phân biệt khi và chỉ khi \(\Delta ' > 0\)
\(\eqalign{
& \Delta ' = {\left[ { - \left( {m + 3} \right)} \right]^2} - 1\left( {{m^2} + 3} \right) \cr
& = {m^2} + 6m + 9 - {m^2} - 3 = 6m + 6 \cr
& \Delta ' > 0 \Rightarrow 6m + 6 > 0 \Leftrightarrow 6m > - 6 \Leftrightarrow m > - 1 \cr} \)
Vậy với m > -1 thì phương trình đã cho có hai nghiệm phân biệt.
b) Phương trình: \(\left( {m + 1} \right){x^2} + 4mx + 4m - 1 = 0\) có hai nghiệm phân biệt khi và chỉ khi m + 1 ≠ 0 và \(\Delta ' > 0\)
\(\eqalign{
& m + 1 \ne 0 \Rightarrow m \ne - 1 \cr
& \Delta ' = {\left( {2m} \right)^2} - \left( {m + 1} \right)\left( {4m - 1} \right) \cr
& = 4{m^2} - 4{m^2} + m - 4m + 1 = 1 - 3m \cr
& \Delta ' > 0 \Rightarrow 1 - 3m > 0 \Leftrightarrow 3m < 1 \Leftrightarrow m < {1 \over 3} \cr} \)
Vậy với \(m < {1 \over 3}\) và m ≠ -1 thì phương trình đã cho có hai nghiệm phân biệt.
Giaibaitap.me
Giải bài tập trang 56 bài 5 Công thức nghiệm thu gọn Sách bài tập (SBT) Toán 9 tập 2. Câu 34: Với giá trị nào của m thì phương trình có nghiệm kép...
Giải bài tập trang 57 bài 6 Hệ thức Vi-ét và ứng dụng Sách bài tập (SBT) Toán 9 tập 2. Câu 35: Giải phương trình rồi kiểm nghiệm hệ thức Vi-ét...
Giải bài tập trang 57 bài 6 Hệ thức Vi-ét và ứng dụng Sách bài tập (SBT) Toán 9 tập 2. Câu 38: Dùng hệ thức Vi-ét để tính nhẩm nghiệm của phương trình...
Giải bài tập trang 58 bài 6 Hệ thức Vi-ét và ứng dụng Sách bài tập (SBT) Toán 9 tập 2. Câu 42: Lập phương trình có hai nghiệm là hai số được cho trong mỗi trường hợp sau...