Câu 103 trang 22 Sách Bài Tập (SBT) Toán 9 Tập 1
Chứng minh
\(x - \sqrt x + 1 = {\left( {\sqrt x - {1 \over 2}} \right)^2} + {3 \over 4}\) với x > 0
Từ đó, cho biết biểu thức \({1 \over {x - \sqrt x + 1}}\) có giá trị lớn nhất là bao nhiêu ?
Giá trị đó đạt được khi x bằng bao nhiêu ?
Gợi ý làm bài:
Ta có: \({\left( {\sqrt x - {1 \over 2}} \right)^2} + {3 \over 4} = x - \sqrt x + {1 \over 4} + {3 \over 4} = x - \sqrt x + 1\)
Vế trái bằng vế phải nên đẳng thức được chứng minh.
Ta có: \({1 \over {x - \sqrt x + 1}} = {1 \over {{{\left( {\sqrt x - {1 \over 2}} \right)}^2} + {3 \over 4}}}\) có giá trị lớn nhất khi và chỉ khi \({\left( {\sqrt x - {1 \over 2}} \right)^2} + {3 \over 4}\) bé nhất.
Vì \({\left( {\sqrt x - {1 \over 2}} \right)^2} \ge 0\) nên \({\left( {\sqrt x - {1 \over 2}} \right)^2} + {3 \over 4} \ge {3 \over 4}\)
Ta có \({\left( {\sqrt x - {1 \over 2}} \right)^2} + {3 \over 4} \ge {3 \over 4}\) bé nhất bằng \({3 \over 4}\)
Khi đó: \({1 \over {x - \sqrt x + 1}} = {1 \over {{3 \over 4}}} = {4 \over 3} \Rightarrow \sqrt x - {1 \over 2} = 0 \Rightarrow x = {1 \over 4}\)
Vậy \({1 \over {x - \sqrt x + 1}}\) có giá trị lớn nhất bằng \({4 \over 3}\) khi \(x = {1 \over 4}\).
Câu 104 trang 23 Sách Bài Tập (SBT) Toán 9 Tập 1
Tìm số x nguyên để biểu thức \({{\sqrt x + 1} \over {\sqrt x - 3}}\) nhận giá trị nguyên.
Gợi ý làm bài:
Ta có:
\(\eqalign{
& {{\sqrt x + 1} \over {\sqrt x - 3}} = {{\sqrt x - 3 + 4} \over {\sqrt x - 3}} \cr
& = 1 + {4 \over {\sqrt x - 3}} \cr}\)
Để \(1 + {4 \over {\sqrt x - 3}}\) nhận giá trị nguyên thì \({4 \over {\sqrt x - 3}}\) phải có giá trị nguyên.
Vì x nguyên nên \(\sqrt x \) là số nguyên hoặc số vô tỉ.
*Nếu \(\sqrt x \) là số vô tỉ thì \(\sqrt x - 3\) là số vô tỉ nên \({4 \over {\sqrt x - 3}}\) không có giá trị nguyên.
Trường hợp này không có giá trị nào của x để biểu thức nhận giá trị nguyên.
*Nếu \(\sqrt x \) là số nguyên thì \(\sqrt x - 3\) là số nguyên. Vậy để \({4 \over {\sqrt x - 3}}\) nguyên thì \(\sqrt x - 3\) phải là ước của 4.
Đồng thời \(x \ge 0\) suy ra: \(\sqrt x \ge 0\)
Ta có: Ư(4) = \({\rm{\{ }} - 4; - 2; - 1;1;2;4{\rm{\} }}\)
Suy ra: \(\sqrt x - 3 = - 4 \Rightarrow \sqrt x = - 1\) (loại)
\(\eqalign{
& \sqrt x - 3 = - 2 \Rightarrow \sqrt x = 1 \Rightarrow x = 1 \cr
& \sqrt x - 3 = - 1 \Rightarrow \sqrt x = 2 \Rightarrow x = 4 \cr
& \sqrt x - 3 = - 1 \Rightarrow \sqrt x = 4 \Rightarrow x = 16 \cr
& \sqrt x - 3 = 1 \Rightarrow \sqrt x = 4 \Rightarrow x = 16 \cr
& \sqrt x - 3 = 2 \Rightarrow \sqrt x = 5 \Rightarrow x = 25 \cr
& \sqrt x - 3 = 4 \Rightarrow \sqrt x = 7 \Rightarrow x = 49 \cr} \)
Vậy với \(x \in {\rm{\{ }}1;4;16;25;49\} \) thì biểu thức \({{\sqrt x + 1} \over {\sqrt x - 3}}\) nhận giá trị nguyên
Câu 105 trang 23 Sách Bài Tập (SBT) Toán 9 Tập 1
Chứng minh các đẳng thức (với a, b không âm và a ≠b )
a) \({{\sqrt a + \sqrt b } \over {2\sqrt a - 2\sqrt b }} - {{\sqrt a - \sqrt b } \over {2\sqrt a + 2\sqrt b }} - {{2b} \over {b - a}} = {{2\sqrt b } \over {\sqrt a - \sqrt b }}\);
b) \(\left( {{{a\sqrt a + b\sqrt b } \over {\sqrt a + \sqrt b }} - \sqrt {ab} } \right){\left( {{{\sqrt a + \sqrt b } \over {a - b}}} \right)^2} = 1.\)
Gợi ý làm bài:
a) Ta có:
\(\eqalign{
& {{\sqrt a + \sqrt b } \over {2\sqrt a - 2\sqrt b }} - {{\sqrt a - \sqrt b } \over {2\sqrt a + 2\sqrt b }} - {{2b} \over {b - a}} \cr
& = {{\sqrt a + \sqrt b } \over {2\left( {\sqrt a - \sqrt b } \right)}} - {{\sqrt a - \sqrt b } \over {2\left( {\sqrt a + \sqrt b } \right)}} - {{2b} \over {b - a}} \cr
& = {{{{\left( {\sqrt a + \sqrt b } \right)}^2} - {{\left( {\sqrt a - \sqrt b } \right)}^2}} \over {2\left( {\sqrt a - \sqrt b } \right)\left( {\sqrt a + \sqrt b } \right)}} + {{2b} \over {\left( {\sqrt a - \sqrt b } \right)\left( {\sqrt a + \sqrt b } \right)}} \cr
& = {{{{\left( {\sqrt a + \sqrt b } \right)}^2} - {{\left( {\sqrt a - \sqrt b } \right)}^2} + 4b} \over {2\left( {\sqrt a - \sqrt b } \right)\left( {\sqrt a + \sqrt b } \right)}} \cr
& = {{a + 2\sqrt {ab} + b - a + 2\sqrt {ab} - b + 4b} \over {2\left( {\sqrt a - \sqrt b } \right)\left( {\sqrt a + \sqrt b } \right)}} \cr
& = {{4\sqrt {ab} + 4b} \over {2\left( {\sqrt a - \sqrt b } \right)\left( {\sqrt a + \sqrt b } \right)}} \cr
& = {{4\sqrt b \left( {\sqrt a + \sqrt b } \right)} \over {2\left( {\sqrt a - \sqrt b } \right)\left( {\sqrt a + \sqrt b } \right)}} \cr
& = {{2\sqrt b } \over {\sqrt a - \sqrt b }} \cr} \)
(với a, b không âm và a ≠b )
Vế trái bằng vế phải nên đẳng thức được chứng minh.
b. Ta có:
\(\eqalign{
& \left( {{{a\sqrt a + b\sqrt b } \over {\sqrt a + \sqrt b }} - \sqrt {ab} } \right){\left( {{{\sqrt a + \sqrt b } \over {a - b}}} \right)^2} \cr
& = \left( {{{\sqrt {{a^3}} + \sqrt {{b^3}} } \over {\sqrt a + \sqrt b }} - \sqrt {ab} } \right){\left[ {{{\sqrt a + \sqrt b } \over {\left( {\sqrt a + \sqrt b } \right)\left( {\sqrt a - \sqrt b } \right)}}} \right]^2} \cr
& = \left[ {{{\left( {\sqrt a + \sqrt b } \right)\left( {\sqrt {{a^2}} - \sqrt {ab} + \sqrt {{b^2}} } \right)} \over {\sqrt a + \sqrt b }} - \sqrt {ab} } \right]{\left( {{1 \over {\sqrt a - \sqrt b }}} \right)^2} \cr
& = \left( {\sqrt {{a^2}} - \sqrt {ab} + \sqrt {{b^2}} - \sqrt {ab} } \right){1 \over {{{\left( {\sqrt a - \sqrt b } \right)}^2}}} \cr
& = {{{{\left( {\sqrt a - \sqrt b } \right)}^2}} \over {{{\left( {\sqrt a - \sqrt b } \right)}^2}}} = 1 \cr} \)
(với a, b không âm và a ≠b )
Vế trái bằng vế phải nên đẳng thức được chứng minh.
Giaibaitap.me
Giải bài tập trang 23 bài ôn tập chương I - căn bậc hai căn bậc ba Sách bài tập (SBT) Toán 9 tập 1. Câu 106: Tìm điều kiện để A có nghĩa...
Giải bài tập trang 13 bài 5 bảng căn bậc hai Sách bài tập (SBT) Toán 9 tập 1. Câu 47: Dùng bảng căn bậc hai tìm x, biết...
Giải bài tập trang 60 bài 1 nhắc lại và bổ sung các khái niệm về hàm số Sách bài tập (SBT) Toán 9 tập 1. Câu 1: Trong các bảng sau ghi các giá trị tương ứng của x và y. Bảng nào xác định y là hàm số của x...
Giải bài tập trang 60, 61 bài 1 nhắc lại và bổ sung các khái niệm về hàm số Sách bài tập (SBT) Toán 9 tập 1. Câu 4: Chứng minh rằng hàm số đồng biến trên R....