Trang chủ
Loigiaihay.com 2025

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết
Bình chọn:
4.9 trên 7 phiếu

Giải sách bài tập Toán 9

CHƯƠNG I: CĂN BẬC HAI. CĂN BẬC BA

Giải bài tập trang 9, 10 bài 3 Liên hệ giữa phép nhân và phép khai phương Sách bài tập (SBT) Toán 9 tập 1. Câu 30: Cho các biểu thức...

Câu 30 trang 9 Sách Bài Tập (SBT) Toán 9 Tập 1

Cho các biểu thức:

\(A = \sqrt {x + 2} .\sqrt {x - 3} \) và \(B = \sqrt {(x + 2)(x - 3)} .\)

a) Tìm x để A có nghĩa. Tìm x của B có nghĩa.

b) Với giá trị nào của x thì A = B ?

Gợi ý làm bài

a) Ta có: \(A = \sqrt {x + 2} .\sqrt {x - 3} \) có nghĩa khi và chỉ khi:

\(\left\{ \matrix{
x + 2 \ge 0 \hfill \cr 
x - 3 \ge 0 \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{
x \ge - 2 \hfill \cr 
x \ge 3 \hfill \cr} \right. \Leftrightarrow x \ge 3\)

\(B = \sqrt {(x + 2)(x - 3)} \) có nghĩa khi và chỉ khi:

\((x + 2)(x - 3) \ge 0\)

Trường hợp 1: 

\(\left\{ \matrix{
x + 2 \ge 0 \hfill \cr 
x - 3 \ge 0 \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{
x \ge - 2 \hfill \cr 
x \ge 3 \hfill \cr} \right. \Leftrightarrow x \ge 3\)

Trường hợp 2: 

\(\left\{ \matrix{
x + 2 \le 0 \hfill \cr 
x - 3 \le 0 \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{
x \le - 2 \hfill \cr 
x \le 3 \hfill \cr} \right. \Leftrightarrow x \le - 2\)

Vậy với x ≥ 3 hoặc x ≤ -2 thì B có nghĩa

b) Để A và B đồng thời có nghĩa thì x ≥ 3

Vậy với x ≥ 3 thì A = B.

 


Câu 31 trang 10 Sách Bài Tập (SBT) Toán 9 Tập 1

Biểu diễn \(\sqrt {{\rm{ab}}} \) ở dạng tích các căn bậc 2 với a < 0 và b < 0.

Áp dụng tính \(\sqrt {( - 25).( - 64)} \)

Gợi ý làm bài

Vì a < 0 nên –a > 0 và b < 0 nên –b > 0

Ta có: \(\sqrt {ab}  = \sqrt {( - a).( - b)}  = \sqrt { - a} .\sqrt { - b} \)

Áp dụng: \(\sqrt {( - 25).( - 64)}  = \sqrt {25} .\sqrt {64}  = 5.8 = 40\)

 


Câu 32 trang 10 Sách Bài Tập (SBT) Toán 9 Tập 1

Rút gọn các biểu thức:

a) \(\sqrt {4{{(a - 3)}^2}} \) với a ≥ 3 ;

b) \(\sqrt {9{{(b - 2)}^2}} \) với b < 2 ;

c) \(\sqrt {{a^2}{{(a + 1)}^2}} \) với a > 0 ;

d) \(\sqrt {{b^2}{{(b - 1)}^2}} \) với b < 0 .

Gợi ý làm bài

a) \(\eqalign{
& \sqrt {4{{(a - 3)}^2}} = \sqrt 4 .\sqrt {{{(a - 3)}^2}} \cr 
& = 2.\left| {a - 3} \right| = 2(a - 3) \cr} \) (với a ≥ 3)

b) \(\eqalign{
& \sqrt {9{{(b - 2)}^2}} = \sqrt 9 \sqrt {{{(b - 2)}^2}} \cr 
& = 3.\left| {b - 2} \right| = 3(2 - b) \cr} \) (với b < 2)

c) \(\eqalign{
& \sqrt {{a^2}{{(a + 1)}^2}} = \sqrt {{a^2}} .\sqrt {{{(a + 1)}^2}} \cr 
& = \left| a \right|.\left| {a + 1} \right| = a(a + 1) \cr} \) (với a > 0)

d) \(\eqalign{
& \sqrt {{b^2}{{(b - 1)}^2}} = \sqrt {{b^2}} .\sqrt {{{(b - 1)}^2}} \cr 
& = \left| b \right|.\left| {b - 1} \right| = - b(1 - b) \cr} \) (với b < 0)

Giaibaitap.me

Góp ý - Báo lỗi

Vấn đề em gặp phải là gì ?

Hãy viết chi tiết giúp Giaibaitap.me

Bài giải mới nhất

Bài giải mới nhất các môn khác