Câu 15 trang 51 Sách bài tập (SBT) Toán 9 tập 2
Giải các phương trình
a) \(7{x^2} - 5x = 0\)
b) \( - \sqrt 2 {x^2} + 6x = 0\)
c) \(3,4{x^2} + 8,2x = 0\)
d) \( - {2 \over 5}{x^2} - {7 \over 3}x = 0\)
Giải
a) \(7{x^2} - 5x = 0 \Leftrightarrow x\left( {7x - 5} \right) = 0\)
\( \Leftrightarrow x = 0\) hoặc \(7x - 5 = 0\)
\(\Leftrightarrow x = 0\) hoặc \(x = {5 \over 7}\)
Vậy phương trình có hai nghiệm: \({x_1} = 0;{x_2} = {5 \over 7}\)
b) \( - \sqrt 2 {x^2} + 6x = 0 \Leftrightarrow x\left( {6 - \sqrt 2 x} \right) = 0\)
⇔ x = 0 hoặc \(6 - \sqrt 2 x = 0\)
⇔ x = 0 hoặc \(x = 3\sqrt 2 \)
Vậy phương trình có hai nghiệm: \({x_1} = 0;{x_2} = 3\sqrt 2 \)
c) \(3,4{x^2} + 8,2x = 0 \Leftrightarrow x\left( {17x + 41} \right) = 0\)
⇔ x = 0 hoặc 17x + 41 = 0
⇔ x = 0 hoặc \(x = - {{41} \over {17}}\)
Vậy phương trình có hai nghiệm: \({x_1} = 0;{x_2} = - {{41} \over {17}}\)
d) \( - {2 \over 5}{x^2} - {7 \over 3}x = 0 \Leftrightarrow 6{x^2} + 35x = 0\)
\( \Leftrightarrow x\left( {6x + 35} \right) = 0\)
⇔ x = 0 hoặc 6x + 35 = 0
⇔ x = 0 hoặc \(x = - {{35} \over 6}\)
Vậy phương trình có hai nghiệm: \({x_1} = 0;{x_2} = - {{35} \over 6}\)
Câu 16 trang 52 Sách bài tập (SBT) Toán 9 tập 2
Giải các phương trình:
a) \(5{x^2} - 20 = 0\)
b) \( - 3{x^2} + 15 = 0\)
c) \(1,2{x^2} - 0,192 = 0\)
d) \(1172,5{x^2} + 42,18 = 0\)
Giải
a) \(5{x^2} - 20x = 0 \Leftrightarrow {x^2} = 4 \Leftrightarrow \left| x \right| = 2\)
⇔ x = 2 hoặc x = -2
Vậy phương trình có hai nghiệm: \({x_1} = 2;{x_2} = - 2\)
b) \( - 3{x^2} + 15 = 0 \Leftrightarrow {x^2} = 5 \Leftrightarrow \left| x \right| = \sqrt 5 \)
⇔ \(x = \sqrt 5 \) hoặc \(x = - \sqrt 5 \)
Vậy phương trình có hai nghiệm: \({x_1} = \sqrt 5 ;{x_2} = - \sqrt 5 \)
c) \(1,2{x^2} - 0,192 = 0 \Leftrightarrow {x^2} = 0,16 \Leftrightarrow \left| x \right| = 0,4\)
\( \Leftrightarrow x = 0,4\) hoặc x = -0,4
Vậy phương trình có hai nghiệm: \({x_1} = 0,4;{x_2} = - 0,4\)
d) \(1172,5{x^2} + 42,18 = 0\)
Ta có: \({x^2} \ge 0;1172,5{x^2} \ge 0;1172,5{x^2} + 42,18 > 0\) nên không có giá trị nào của x để \(1172,5{x^2} + 42,18 = 0\)
Phương trình đã cho vô nghiệm.
Câu 17 trang 52 Sách bài tập (SBT) Toán 9 tập 2
Giải các phương trình:
a) \({\left( {x - 3} \right)^2} = 4\)
b) \({\left( {{1 \over 2} - x} \right)^2} - 3 = 0\)
c) \({\left( {2x - \sqrt 2 } \right)^2} - 8 = 0\)
d) \({\left( {2,1x - 1,2} \right)^2} - 0,25 = 0\)
Giải
a)
\(\eqalign{
& {\left( {x - 3} \right)^2} = 4 \Leftrightarrow {\left( {x - 3} \right)^2} - {2^2} = 0 \cr
& \Leftrightarrow \left[ {\left( {x - 3} \right) + 2} \right]\left[ {\left( {x - 3} \right) - 2} \right] = 0 \cr
& \Leftrightarrow \left( {x - 1} \right)\left( {x - 5} \right) = 0 \cr} \)
⇔ x – 1 = 0 hoặc x – 5 = 0
⇔ x = 1 hoặc x = 5
Vậy phương trình có hai nghiệm: \({x_1} = 1;{x_2} = 5\)
b)
\(\eqalign{
& {\left( {{1 \over 2} - x} \right)^2} - 3 = 0 \Leftrightarrow \left[ {\left( {{1 \over 2} - x} \right) + \sqrt 3 } \right]\left[ {\left( {{1 \over 2} - x} \right) - \sqrt 3 } \right] = 0 \cr
& \Leftrightarrow \left( {{1 \over 2} + \sqrt 3 - x} \right)\left( {{1 \over 2} - \sqrt 3 - x} \right) = 0 \cr} \)
⇔ \({1 \over 2} + \sqrt 3 - x = 0\) hoặc \({1 \over 2} - \sqrt 3 - x = 0\)
\( \Leftrightarrow x = {1 \over 2} + \sqrt 3 \) hoặc \(x = {1 \over 2} - \sqrt 3 \)
Vậy phương trình có hai nghiệm: \({x_1} = {1 \over 2} = \sqrt 3 ;{x_2} = {1 \over 2} - \sqrt 3 \)
c) \({\left( {2x - \sqrt 2 } \right)^2} - 8 = 0 \Leftrightarrow {\left( {2x - \sqrt 2 } \right)^2} - {\left( {2\sqrt 2 } \right)^2} = 0\)
\(\eqalign{
& \Leftrightarrow \left[ {\left( {2x - \sqrt 2 } \right) + 2\sqrt 2 } \right]\left[ {\left( {2x - \sqrt 2 } \right) - 2\sqrt 2 } \right] = 0 \cr
& \Leftrightarrow \left( {2x + \sqrt 2 } \right)\left( {2x - 3\sqrt 2 } \right) = 0 \cr} \)
⇔ \(2x + \sqrt 2 = 0\) hoặc \(2x - 3\sqrt 2 = 0\)
\( \Leftrightarrow x = - {{\sqrt 2 } \over 2}\) hoặc \(x = {{3\sqrt 2 } \over 2}\)
Vậy phương trình có hai nghiệm: \({x_1} = - {{\sqrt 2 } \over 2};{x_2} = {{3\sqrt 2 } \over 2}\)
d) \({\left( {2,1x - 1,2} \right)^2} - 0,25 = 0 \Leftrightarrow {\left( {2,1x - 1,2} \right)^2} - {\left( {0,5} \right)^2} = 0\)
\(\eqalign{
& \Leftrightarrow \left( {2,1x - 1,2 + 0,5} \right)\left( {2,1x - 1,2 - 0,5} \right) = 0 \cr
& \Leftrightarrow \left( {2,1x - 0,7} \right)\left( {2,1x - 1,7} \right) = 0 \cr} \)
\( \Leftrightarrow 2,1x - 0,7 = 0\) hoặc \(2,1x - 1,7 = 0\)
\( \Leftrightarrow x = {1 \over 3}\) hoặc \(x = {{17} \over {21}}\)
Vậy phương trình có hai nghiệm: \({x_1} = {1 \over 3};{x_2} = {{17} \over {21}}\)
Giaibaitap.me
Giải bài tập trang 52 bài 3 Phương trình bậc hai một ẩn Sách bài tập (SBT) Toán 9 tập 2. Câu 18: Giải các phương trình sau bằng cách biến đổi chúng thành những phương trình với vế trái là một bình phương còn vế phải là một hằng số...
Giải bài tập trang 52, 53 bài 3 Phương trình bậc hai một ẩn Sách bài tập (SBT) Toán 9 tập 2. Câu 3.2: Giải các phương trình sau bằng cách biến đổi chúng thành những phương trình với vế trái là một bình phương còn vế phải là một hằng số...
Giải bài tập trang 53 bài 4 Công thức nghiệm của phương trình bậc hai Sách bài tập (SBT) Toán 9 tập 2. Câu 20: Xác định các hệ số a, b, c; tính biệt thức ∆ rồi tìm nghiệm của các phương trình...
Giải bài tập trang 54 bài 4 Công thức nghiệm của phương trình bậc hai Sách bài tập (SBT) Toán 9 tập 2. Câu 24: Đối với mỗi phương trình sau, hãy tìm giá trị của m để phương trình có nghiệm kép...