Trang chủ
Loigiaihay.com 2025

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết
Bình chọn:
4 trên 6 phiếu

Giải sách bài tập Toán 9

CHƯƠNG IV. HÀM SỐ BẬC HAI. PHƯƠNG TRÌNH BẬC HAI MỘT ẨN.

Giải bài tập trang 51, 52 bài 3 Phương trình bậc hai một ẩn Sách bài tập (SBT) Toán 9 tập 2. Câu 15: Giải các phương trình...

Câu 15 trang 51 Sách bài tập (SBT) Toán 9 tập 2

Giải các phương trình

a) \(7{x^2} - 5x = 0\)

b) \( - \sqrt 2 {x^2} + 6x = 0\)

c) \(3,4{x^2} + 8,2x = 0\)

d) \( - {2 \over 5}{x^2} - {7 \over 3}x = 0\)

Giải

a) \(7{x^2} - 5x = 0 \Leftrightarrow x\left( {7x - 5} \right) = 0\)

\( \Leftrightarrow x = 0\) hoặc \(7x - 5 = 0\)

\(\Leftrightarrow x = 0\) hoặc \(x = {5 \over 7}\)

Vậy phương trình có hai nghiệm: \({x_1} = 0;{x_2} = {5 \over 7}\)

b) \( - \sqrt 2 {x^2} + 6x = 0 \Leftrightarrow x\left( {6 - \sqrt 2 x} \right) = 0\)

⇔ x = 0 hoặc \(6 - \sqrt 2 x = 0\)

⇔ x = 0 hoặc \(x = 3\sqrt 2 \)

Vậy phương trình có hai nghiệm: \({x_1} = 0;{x_2} = 3\sqrt 2 \)

c) \(3,4{x^2} + 8,2x = 0 \Leftrightarrow x\left( {17x + 41} \right) = 0\)

⇔ x = 0 hoặc 17x + 41 = 0

⇔ x = 0 hoặc \(x =  - {{41} \over {17}}\)

Vậy phương trình có hai nghiệm: \({x_1} = 0;{x_2} =  - {{41} \over {17}}\)

d) \( - {2 \over 5}{x^2} - {7 \over 3}x = 0 \Leftrightarrow 6{x^2} + 35x = 0\)

\( \Leftrightarrow x\left( {6x + 35} \right) = 0\)

⇔ x = 0 hoặc 6x + 35 = 0

⇔ x = 0 hoặc \(x =  - {{35} \over 6}\)

Vậy phương trình có hai nghiệm: \({x_1} = 0;{x_2} =  - {{35} \over 6}\)

 


Câu 16 trang 52 Sách bài tập (SBT) Toán 9 tập 2

Giải các phương trình:

a) \(5{x^2} - 20 = 0\)

b) \( - 3{x^2} + 15 = 0\)

c) \(1,2{x^2} - 0,192 = 0\)

d) \(1172,5{x^2} + 42,18 = 0\)

Giải

a) \(5{x^2} - 20x = 0 \Leftrightarrow {x^2} = 4 \Leftrightarrow \left| x \right| = 2\)

⇔ x = 2 hoặc x = -2

Vậy phương trình có hai nghiệm: \({x_1} = 2;{x_2} =  - 2\)

b) \( - 3{x^2} + 15 = 0 \Leftrightarrow {x^2} = 5 \Leftrightarrow \left| x \right| = \sqrt 5 \)

⇔ \(x = \sqrt 5 \) hoặc \(x =  - \sqrt 5 \)

Vậy phương trình có hai nghiệm: \({x_1} = \sqrt 5 ;{x_2} =  - \sqrt 5 \)

c) \(1,2{x^2} - 0,192 = 0 \Leftrightarrow {x^2} = 0,16 \Leftrightarrow \left| x \right| = 0,4\)

\( \Leftrightarrow x = 0,4\) hoặc x = -0,4

Vậy phương trình có hai nghiệm: \({x_1} = 0,4;{x_2} =  - 0,4\)

d) \(1172,5{x^2} + 42,18 = 0\)

Ta có: \({x^2} \ge 0;1172,5{x^2} \ge 0;1172,5{x^2} + 42,18 > 0\) nên không có giá trị nào của x để \(1172,5{x^2} + 42,18 = 0\)

Phương trình đã cho vô nghiệm. 

 


Câu 17 trang 52 Sách bài tập (SBT) Toán 9 tập 2

Giải các phương trình:

a) \({\left( {x - 3} \right)^2} = 4\)

b) \({\left( {{1 \over 2} - x} \right)^2} - 3 = 0\)

c) \({\left( {2x - \sqrt 2 } \right)^2} - 8 = 0\)

d) \({\left( {2,1x - 1,2} \right)^2} - 0,25 = 0\)

Giải

a) 

\(\eqalign{
& {\left( {x - 3} \right)^2} = 4 \Leftrightarrow {\left( {x - 3} \right)^2} - {2^2} = 0 \cr 
& \Leftrightarrow \left[ {\left( {x - 3} \right) + 2} \right]\left[ {\left( {x - 3} \right) - 2} \right] = 0 \cr 
& \Leftrightarrow \left( {x - 1} \right)\left( {x - 5} \right) = 0 \cr} \)

⇔ x – 1 = 0 hoặc x – 5 = 0

⇔ x = 1 hoặc x = 5

Vậy phương trình có hai nghiệm: \({x_1} = 1;{x_2} = 5\)

b) 

\(\eqalign{
& {\left( {{1 \over 2} - x} \right)^2} - 3 = 0 \Leftrightarrow \left[ {\left( {{1 \over 2} - x} \right) + \sqrt 3 } \right]\left[ {\left( {{1 \over 2} - x} \right) - \sqrt 3 } \right] = 0 \cr 
& \Leftrightarrow \left( {{1 \over 2} + \sqrt 3 - x} \right)\left( {{1 \over 2} - \sqrt 3 - x} \right) = 0 \cr} \)

⇔ \({1 \over 2} + \sqrt 3  - x = 0\) hoặc \({1 \over 2} - \sqrt 3  - x = 0\)

\( \Leftrightarrow x = {1 \over 2} + \sqrt 3 \) hoặc \(x = {1 \over 2} - \sqrt 3 \)

Vậy phương trình có hai nghiệm: \({x_1} = {1 \over 2} = \sqrt 3 ;{x_2} = {1 \over 2} - \sqrt 3 \)

c) \({\left( {2x - \sqrt 2 } \right)^2} - 8 = 0 \Leftrightarrow {\left( {2x - \sqrt 2 } \right)^2} - {\left( {2\sqrt 2 } \right)^2} = 0\)

\(\eqalign{
& \Leftrightarrow \left[ {\left( {2x - \sqrt 2 } \right) + 2\sqrt 2 } \right]\left[ {\left( {2x - \sqrt 2 } \right) - 2\sqrt 2 } \right] = 0 \cr 
& \Leftrightarrow \left( {2x + \sqrt 2 } \right)\left( {2x - 3\sqrt 2 } \right) = 0 \cr} \)

⇔ \(2x + \sqrt 2  = 0\) hoặc \(2x - 3\sqrt 2  = 0\)

\( \Leftrightarrow x =  - {{\sqrt 2 } \over 2}\) hoặc \(x = {{3\sqrt 2 } \over 2}\)

Vậy phương trình có hai nghiệm: \({x_1} =  - {{\sqrt 2 } \over 2};{x_2} = {{3\sqrt 2 } \over 2}\)

d) \({\left( {2,1x - 1,2} \right)^2} - 0,25 = 0 \Leftrightarrow {\left( {2,1x - 1,2} \right)^2} - {\left( {0,5} \right)^2} = 0\)

\(\eqalign{
& \Leftrightarrow \left( {2,1x - 1,2 + 0,5} \right)\left( {2,1x - 1,2 - 0,5} \right) = 0 \cr 
& \Leftrightarrow \left( {2,1x - 0,7} \right)\left( {2,1x - 1,7} \right) = 0 \cr} \)

\( \Leftrightarrow 2,1x - 0,7 = 0\) hoặc \(2,1x - 1,7 = 0\)

\( \Leftrightarrow x = {1 \over 3}\) hoặc \(x = {{17} \over {21}}\)

Vậy phương trình có hai nghiệm: \({x_1} = {1 \over 3};{x_2} = {{17} \over {21}}\)

Giaibaitap.me

Góp ý - Báo lỗi

Vấn đề em gặp phải là gì ?

Hãy viết chi tiết giúp Giaibaitap.me

  • Giải bài 18, 19, 3.1 trang 52 Sách bài tập Toán 9 tập 2

    Giải bài tập trang 52 bài 3 Phương trình bậc hai một ẩn Sách bài tập (SBT) Toán 9 tập 2. Câu 18: Giải các phương trình sau bằng cách biến đổi chúng thành những phương trình với vế trái là một bình phương còn vế phải là một hằng số...

  • Giải bài 3.2, 3.3, 3.4 trang 52, 53 Sách bài tập Toán 9 tập 2

    Giải bài tập trang 52, 53 bài 3 Phương trình bậc hai một ẩn Sách bài tập (SBT) Toán 9 tập 2. Câu 3.2: Giải các phương trình sau bằng cách biến đổi chúng thành những phương trình với vế trái là một bình phương còn vế phải là một hằng số...

  • Giải bài 20, 21, 22, 23 trang 53 Sách bài tập Toán 9 tập 2

    Giải bài tập trang 53 bài 4 Công thức nghiệm của phương trình bậc hai Sách bài tập (SBT) Toán 9 tập 2. Câu 20: Xác định các hệ số a, b, c; tính biệt thức ∆ rồi tìm nghiệm của các phương trình...

  • Giải câu 4.1, 4.2, 4.3, 4.4 trang 54, 55 Sách bài tập Toán 9 tập 2

    Giải bài tập trang 54, 55 bài 4 Công thức nghiệm của phương trình bậc hai Sách bài tập (SBT) Toán 9 tập 2. Câu 4.1: Giải các phương trình sau bằng cách (chuyển các số hạng tự do sang vế phải bằng công thức nghiệm) và so sánh kết quả tìm được...

Bài giải mới nhất

Bài giải mới nhất các môn khác