Câu 20 trang 53 Sách bài tập (SBT) Toán 9 tập 2
Xác định các hệ số a, b, c; tính biệt thức ∆ rồi tìm nghiệm của các phương trình:
a) \(2{x^2} - 5x + 1 = 0\)
b) \(4{x^2} + 4x + 1 = 0\)
c) \(5{x^2} - x + 2 = 0\)
d) \( - 3{x^2} + 2x + 8 = 0\)
Giải
a) \(2{x^2} - 5x + 1 = 0\) có hệ số a = 2, b = -5, c = 1
\(\eqalign{
& \Delta = {b^2} - 4ac = {\left( { - 5} \right)^2} - 4.2.1 = 25 - 8 = 17 > 0 \cr
& \sqrt \Delta = \sqrt {17} \cr
& {x_1} = {{ - b + \sqrt \Delta } \over {2a}} = {{ - \left( { - 5} \right) + \sqrt {17} } \over {2.2}} = {{5 + \sqrt {17} } \over 4} \cr
& {x_2} = {{ - b - \sqrt \Delta } \over {2a}} = {{ - \left( { - 5} \right) - \sqrt {17} } \over {2.2}} = {{5 - \sqrt {17} } \over 4} \cr} \)
b) \(4{x^2} + 4x + 1 = 0\) có hệ số a = 4, b = 4, c = 1
\(\Delta = {b^2} - 4ac = {4^2} - 4.4.1 = 16 - 16 = 0\)
Phương trình có nghiệm số kép: \({x_1} = {x_2} = - {b \over {2a}} = - {4 \over {2.4}} = - {1 \over 2}\)
c) \(5{x^2} - x + 2 = 0\) có hệ số a = 5, b = -1, c = 2
\(\Delta = {b^2} - 4ac = {\left( { - 1} \right)^2} - 4.5.2 = 1 - 40 = - 39 < 0\)
Phương trình vô nghiệm.
d) \( - 3{x^2} + 2x + 8 = 0\) có hệ số a = -3, b= 2, c = 8
\(\eqalign{
& \Delta = {b^2} - 4ac = {2^2} - 4.\left( { - 3} \right).8 = 100 > 0 \cr
& \sqrt \Delta = \sqrt {100} = 10 \cr
& {x_1} = {{ - b - \sqrt \Delta } \over {2a}} = {{ - 2 - 10} \over {2.\left( { - 3} \right)}} = {{ - 12} \over { - 6}} = 2 \cr
& {x_2} = {{ - b + \sqrt \Delta } \over {2a}} = {{ - 2 + 10} \over {2.\left( { - 3} \right)}} = - {8 \over 6} = - {4 \over 3} \cr} \)
Câu 21 trang 53 Sách bài tập (SBT) Toán 9 tập 2
Xác định các hệ số a, b, c rồi giải phương trình:
a) \(2{x^2} - 2\sqrt 2 x + 1 = 0\)
b) \(2{x^2} - \left( {1 - 2\sqrt 2 } \right)x - \sqrt 2 = 0\)
c) \({1 \over 3}{x^2} - 2x - {2 \over 3} = 0\)
d) \(3{x^2} + 7,9x + 3,36 = 0\)
Giải
a) \(2{x^2} - 2\sqrt 2 x + 1 = 0\) có hệ số a = 2, b = \( - 2\sqrt 2 \), c = 1
\(\Delta = {b^2} - 4ac = {\left( { - 2\sqrt 2 } \right)^2} - 4.2.1 = 8 - 8 = 0\)
Phương trình có nghiệm kép: \({x_1} = {x_2} = - {b \over {2a}} = - {{ - 2\sqrt 2 } \over {2.2}} = {{\sqrt 2 } \over 2}\)
b) \(2{x^2} - \left( {1 - 2\sqrt 2 } \right)x - \sqrt 2 = 0\)
Có hệ số a = 2, \(b = - \left( {1 - 2\sqrt 2 } \right)\), c = \( - \sqrt 2 \)
\(\eqalign{
& \Delta = {b^2} - 4ac = {\left[ { - \left( {1 - 2\sqrt 2 } \right)} \right]^2} - 4.2.\left( { - \sqrt 2 } \right) \cr
& = 1 - 4\sqrt 2 + 8 + 8\sqrt 2 \cr
& \Delta = 1 + 4\sqrt 2 + 8 = 1 + 2.2\sqrt 2 + {\left( {2\sqrt 2 } \right)^2} = {\left( {1 + 2\sqrt 2 } \right)^2} > 0 \cr
& \sqrt \Delta = \sqrt {{{\left( {1 + 2\sqrt 2 } \right)}^2}} = 1 + 2\sqrt 2 \cr
& {x_1} = {{1 - 2\sqrt 2 + 1 + 2\sqrt 2 } \over {2.2}} = {2 \over 4} = {1 \over 2} \cr
& {x_2} = {{1 - 2\sqrt 2 - 1 - 2\sqrt 2 } \over {2.2}} = {{ - 4\sqrt 2 } \over 4} = - \sqrt 2 \cr} \)
c) \({1 \over 3}{x^2} - 2x - {2 \over 3} = 0 \Leftrightarrow {x^2} - 6x - 2 = 0\)
Có hệ số a = 1, b = -6, c = -2
\(\eqalign{
& \Delta = {b^2} - 4ac = {\left( { - 6} \right)^2} - 4.1.\left( { - 2} \right) = 36 + 8 = 44 > 0 \cr
& \sqrt \Delta = \sqrt {44} = 2\sqrt {11} \cr
& {x_1} = {{6 + 2\sqrt {11} } \over {2.1}} = 3 + \sqrt {11} \cr
& {x_2} = {{6 - 2\sqrt {11} } \over {2.1}} = 3 - \sqrt {11} \cr} \)
d) \(3{x^2} + 7,9x + 3,36 = 0\)
Có hệ số a = 3; b = 7,9; c = 3,36
\(\eqalign{
& \Delta = {b^2} - 4ac = {\left( {7,9} \right)^2} - 4.3.3,36 = 62,41 - 40,32 = 22,09 > 0 \cr
& \sqrt \Delta = \sqrt {22,09} = 4,7 \cr
& {x_1} = {{ - 7,9 + 4,7} \over {2.3}} = {{ - 3,2} \over 6} = {{ - 32} \over {60}} = - {8 \over {15}} \cr
& {x_2} = {{ - 7,9 - 4,7} \over {2.3}} = {{ - 12,6} \over 6} = - 2,1 \cr} \)
Câu 22 trang 53 Sách bài tập (SBT) Toán 9 tập 2
Giải phương trình bằng đồ thị.
Cho phương trình \(2{x^2} + x - 3 = 0\)
a) Vẽ các đồ thị của hai hàm số: \(y = 2{x^2},y = - x + 3\) trong cùng một mặt phẳng tọa độ.
b) Tìm hoành độ của mỗi giao điểm của hai đồ thị. Hãy giải thích vì sao các hoành độ này đều là nghiệm của phương trình đã cho.
c) Giải phương trình đã cho công thức nghiệm, so sánh với kết quả tìm được trong câu b.
Giải
a) Vẽ đồ thị hàm số \(y = 2{x^2}\)
x |
-2 |
-1 |
0 |
1 |
2 |
\(y = 2{x^2}\) |
8 |
2 |
0 |
2 |
8 |
Vẽ đồ thị y = -x + 3
Cho x = 0 ⇒ y = 3(0; 3)
Cho y = 0 ⇒ x = 3(3; 0)
b) M(-1,5; 4,5); N(1; 2)
x = -1,5 là nghiệm của phương trình vì
\(2.{\left( { - 1,5} \right)^2} - 1,5 - 3 = 4,5 - 4,5 = 0\)
x = 1 là nghiệm của phương trình vì
\({2.1^2} + 1 - 3 = 2 + 1 - 3 = 0\)
c) \(2{x^2} + x - 3 = 0\)
\(\eqalign{
& \Delta = {1^2} - 4.2.\left( { - 3} \right) = 1 + 24 = 25 > 0 \cr
& \sqrt \Delta = \sqrt {25} = 5 \cr
& {x_1} = {{ - 1 + 5} \over {2.2}} = {4 \over 4} = 1 \cr
& {x_2} = {{ - 1 - 5} \over {2.2}} = {{ - 6} \over 4} = - 1,5 \cr} \)
Câu 23 trang 53 Sách bài tập (SBT) Toán 9 tập 2
Cho phương trình \({1 \over 2}{x^2} - 2x + 1 = 0\)
a) Vẽ đồ thị của hàm số \(y = {1 \over 2}{x^2}\) và \(y = 2x - 1\) trên cùng một mặt phẳng tọa độ. Dùng đồ thị tìm giá trị gần đúng nghiệm của phương trình (làm tròn đến chữ số thập phân thứ hai).
b) Giải phương trình đã cho bằng công thức nghiệm, so sánh với kết quả tìm được trong câu a.
Giải
a) Vẽ đồ thị \(y = {1 \over 2}{x^2}\)
x |
-2 |
-1 |
0 |
1 |
2 |
\(y = {1 \over 2}{x^2}\) |
2 |
0 |
2 |
Vẽ đồ thị y = 2x – 1
Cho x = 0 ⇒ y = -1(0; -1)
\({x_1} \approx 0,60;{x_2} \approx 3,40\)
b) \({1 \over 2}{x^2} - 2x + 1 = 0\)
\(\eqalign{
& \Leftrightarrow {x^2} - 4x + 2 = 0 \cr
& \Delta = {\left( { - 4} \right)^2} - 4.1.2 = 16 - 8 = 8 > 0 \cr
& \sqrt \Delta = \sqrt 8 = 2\sqrt 2 \cr
& {x_1} = {{4 + 2\sqrt 2 } \over {2.1}} = 2 + \sqrt 2 \approx 3,41 \cr
& {x_2} = {{4 - 2\sqrt 2 } \over {2.1}} = 2 - \sqrt 2 \approx 0,59 \cr} \)
Giaibaitap.me
Giải bài tập trang 54 bài 4 Công thức nghiệm của phương trình bậc hai Sách bài tập (SBT) Toán 9 tập 2. Câu 24: Đối với mỗi phương trình sau, hãy tìm giá trị của m để phương trình có nghiệm kép...
Giải bài tập trang 54, 55 bài 4 Công thức nghiệm của phương trình bậc hai Sách bài tập (SBT) Toán 9 tập 2. Câu 4.1: Giải các phương trình sau bằng cách (chuyển các số hạng tự do sang vế phải bằng công thức nghiệm) và so sánh kết quả tìm được...
Giải bài tập trang 55 bài 5 Công thức nghiệm thu gọn Sách bài tập (SBT) Toán 9 tập 2. Câu 27: Xác định a, b’, c trong mỗi phương trình, rồi giải phương trình bằng công thức nghiệm thu gọn...
Giải bài tập trang 56 bài 5 Công thức nghiệm thu gọn Sách bài tập (SBT) Toán 9 tập 2. Câu 30: Tính gần đúng nghiệm của phương trình (làm tròn đến chữ số thập phân thứ hai)...