Câu 3.2 trang 52 Sách bài tập (SBT) Toán 9 tập 2
Giải các phương trình sau bằng cách biến đổi chúng thành những phương trình với vế trái là một bình phương còn vế phải là một hằng số:
a) \({x^2} - 3x + 1 = 0\)
b) \({x^2} + \sqrt 2 x - 1 = 0\)
c) \(5{x^2} - 7x + 1 = 0\)
d) \(3{x^2} + 2\sqrt 3 x - 2 = 0\)
Giải
a) \({x^2} - 3x + 1 = 0 \Leftrightarrow {x^2} - 2.{3 \over 2}x + {9 \over 4} = {9 \over 4} - 1\)
\( \Leftrightarrow {\left( {x - {3 \over 2}} \right)^2} = {5 \over 4} \Leftrightarrow \left| {x - {3 \over 2}} \right| = {{\sqrt 5 } \over 2}\)
\( \Leftrightarrow x - {3 \over 2} = {{\sqrt 5 } \over 2}\) hoặc \(x - {3 \over 2} = - {{\sqrt 5 } \over 2}\)
\( \Leftrightarrow x = {{3 + \sqrt 5 } \over 2}\) hoặc \(x = {{3 - \sqrt 5 } \over 2}\)
Vậy phương trình có hai nghiệm: \({x_1} = {{3 + \sqrt 5 } \over 2};{x_2} = {{3 - \sqrt 5 } \over 2}\)
b) \({x^2} + \sqrt 2 x - 1 = 0 \Leftrightarrow {x^2} + 2.{{\sqrt 2 } \over 2}x + {\left( {{{\sqrt 2 } \over 2}} \right)^2} = 1 + {\left( {{{\sqrt 2 } \over 2}} \right)^2}\)
\( \Leftrightarrow {\left( {x + {{\sqrt 2 } \over 2}} \right)^2} = {3 \over 2} \Leftrightarrow \left| {x + {{\sqrt 2 } \over 2}} \right| = {{\sqrt 6 } \over 2}\)
\( \Leftrightarrow x + {{\sqrt 2 } \over 2} = {{\sqrt 6 } \over 2}\) hoặc \(x + {{\sqrt 2 } \over 2} = - {{\sqrt 6 } \over 2}\)
\( \Leftrightarrow x = {{ - \sqrt 2 + \sqrt 6 } \over 2}\) hoặc \(x = - {{\sqrt 2 + \sqrt 6 } \over 2}\)
Vậy phương trình có hai nghiệm: \({x_1} = {{ - \sqrt 2 + \sqrt 6 } \over 2};{x_2} = - {{\sqrt 2 + \sqrt 6 } \over 2}\)
c)
\(\eqalign{
& 5{x^2} - 7x + 1 = 0 \Leftrightarrow {x^2} - {7 \over 5}x + {1 \over 5} = 0 \cr
& \Leftrightarrow {x^2} - 2.{7 \over {10}}x + {{49} \over {100}} = {{49} \over {100}} - {1 \over 5} \cr
& \Leftrightarrow {\left( {x - {7 \over {10}}} \right)^2} = {{29} \over {100}} \Leftrightarrow \left| {x - {7 \over {10}}} \right| = {{\sqrt {29} } \over {10}} \cr} \)
\( \Leftrightarrow x - {7 \over {10}} = {{\sqrt {29} } \over {10}}\) hoặc \(x - {7 \over {10}} = - {{\sqrt {29} } \over {10}}\)
\( \Leftrightarrow x = {{7 + \sqrt {29} } \over {10}}\) hoặc \(x = {{7 - \sqrt {29} } \over {10}}\)
Vậy phương trình có hai nghiệm: \({x_1} = {{7 + \sqrt {29} } \over {10}};{x_2} = {{7 - \sqrt {29} } \over {10}}\)
d)
\(\eqalign{
& 3{x^2} + 2\sqrt 3 x - 2 = 0 \cr
& \Leftrightarrow {x^2} + 2.{{\sqrt 3 } \over 3}x - {2 \over 3} = 0 \cr
& \Leftrightarrow x + 2.{{\sqrt 3 } \over 3}x + {\left( {{{\sqrt 3 } \over 3}} \right)^2} = {2 \over 3} + {\left( {{{\sqrt 3 } \over 3}} \right)^2} \cr
& \Leftrightarrow {\left( {x + {{\sqrt 3 } \over 3}} \right)^2} = 1 \cr
& \Leftrightarrow \left| {x + {{\sqrt 3 } \over 3}} \right| = 1 \cr} \)
\( \Leftrightarrow x + {{\sqrt 3 } \over 3} = 1\) hoặc \(x + {{\sqrt 3 } \over 3} = - 1\)
\( \Leftrightarrow x = 1 - {{\sqrt 3 } \over 3}\) hoặc \(x = - 1 - {{\sqrt 3 } \over 3}\)
Vậy phương trình có hai nghiệm: \({x_1} = 1 - {{\sqrt 3 } \over 3};{x_2} = - 1 - {{\sqrt 3 } \over 3}\)
Câu 3.3 trang 53 Sách bài tập (SBT) Toán 9 tập 2
Tìm b, c để phương trình \({x^2} + bx + c = 0\) có hai nghiệm là những số dưới đây:
a) \({x_1} = - 1\) và \({x_2} = 2\)
b) x1 = -5 và x2 = 0
c) \({x_1} = 1 + \sqrt 2 \) và \({x_2} = 1 - \sqrt 2 \)
d) x1 = 3 và \({x_2} = - {1 \over 2}\)
Giải
a) Hai số -1 và 2 là ngiệm của phương trình:
\(\eqalign{
& \left( {x + 1} \right)\left( {x - 2} \right) = 0 \cr
& \Leftrightarrow {x^2} - 2x + x - 2 = 0 \cr
& \Leftrightarrow {x^2} - x - 2 = 0 \cr} \)
Hệ số: b = -1; c = -2.
b) Hai số - 5 và 0 là nghiệm của phương trình:
\(\eqalign{
& \left( {x + 5} \right)\left( {x + 0} \right) = 0 \cr
& \Leftrightarrow x\left( {x + 5} \right) = 0 \cr
& \Leftrightarrow {x^2} + 5x = 0 \cr} \)
Hệ số: b = 5; c = 0
c) Hai số \(1 + \sqrt 2 \) và \(1 - \sqrt 2 \) là nghiệm của phương trình:
\(\eqalign{
& \left[ {x - \left( {1 + \sqrt 2 } \right)} \right]\left[ {x - \left( {1 - \sqrt 2 } \right)} \right] = 0 \cr
& \Leftrightarrow {x^2} - \left( {1 - \sqrt 2 } \right)x - \left( {1 + \sqrt 2 } \right)x + \left( {1 + \sqrt 2 } \right)\left( {1 - \sqrt 2 } \right) = 0 \cr
& \Leftrightarrow {x^2} - 2x - 1 = 0 \cr} \)
Hệ số: b = -2; c = -1
d) Hai số 3 và \( - {1 \over 2}\) là nghiệm của phương trình:
\(\eqalign{
& \left( {x - 3} \right)\left( {x + {1 \over 2}} \right) = 0 \cr
& \Leftrightarrow {x^2} + {1 \over 2}x - 3x - {3 \over 2} = 0 \cr
& \Leftrightarrow 2{x^2} - 5x - 3 = 0 \cr} \)
Hệ số: b = -5; c = -3
Câu 3.4 trang 53 Sách bài tập (SBT) Toán 9 tập 2
Tìm a, b, c để phương trình \(a{x^2} + bx + c = 0\) có hai nghiệm là x1 = -2 và x2 = 3.
Có thể tìm được bao nhiêu bộ ba số a, b, c thỏa mãn yêu cầu bài toán?
Giải
x = -2 là nghiệm của phương trình: \(a{x^2} + bx + c = 0\), ta có:
\(4a - 2b + c = 0\)
x = 3 là nghiệm của phương trình: \(a{x^2} + bx + c = 0\) ta có:
\(9a + 3b + c = 0\)
Ba số a, b, c là nghiệm của hệ phương trình:
\(\eqalign{
& \left\{ {\matrix{
{4a - 2b + c = 0} \cr
{9a + 3b + c = 0} \cr
} } \right. \cr
& \Leftrightarrow \left\{ {\matrix{
{5a + 5b = 0} \cr
{4a - 2b + c = 0} \cr
} } \right. \cr
& \Leftrightarrow \left\{ {\matrix{
{b = - a} \cr
{4a - 2\left( { - a} \right) + c = 0} \cr
} } \right. \cr
& \Leftrightarrow \left\{ {\matrix{
{b = - a} \cr
{c = - 6a} \cr} } \right. \cr} \)
Vậy với mọi a ≠ 0 ta có:
\(\left\{ {\matrix{
a \cr
{b = - a} \cr
{c = - 6a} \cr} } \right.\)
thì phương trình \(a{x^2} + bx + c = 0\) có nghiệm x1 = -2; x2 = 3
Ví dụ: a = 2, b = -2, c = -12 ta có phương trình:
\(\eqalign{
& 2{x^2} - 2x - 12 = 0 \cr
& \Leftrightarrow {x^2} - x - 6 = 0 \cr
& \Leftrightarrow \left( {x + 2} \right)\left( {x - 3} \right) = 0 \cr} \)
Có nghiệm: \({x_1} = - 2;{x_2} = 3\)
Có vô số bộ ba a, b, c thỏa mãn yêu cầu bài toán.
Giaibaitap.me
Giải bài tập trang 53 bài 4 Công thức nghiệm của phương trình bậc hai Sách bài tập (SBT) Toán 9 tập 2. Câu 20: Xác định các hệ số a, b, c; tính biệt thức ∆ rồi tìm nghiệm của các phương trình...
Giải bài tập trang 54 bài 4 Công thức nghiệm của phương trình bậc hai Sách bài tập (SBT) Toán 9 tập 2. Câu 24: Đối với mỗi phương trình sau, hãy tìm giá trị của m để phương trình có nghiệm kép...
Giải bài tập trang 54, 55 bài 4 Công thức nghiệm của phương trình bậc hai Sách bài tập (SBT) Toán 9 tập 2. Câu 4.1: Giải các phương trình sau bằng cách (chuyển các số hạng tự do sang vế phải bằng công thức nghiệm) và so sánh kết quả tìm được...
Giải bài tập trang 55 bài 5 Công thức nghiệm thu gọn Sách bài tập (SBT) Toán 9 tập 2. Câu 27: Xác định a, b’, c trong mỗi phương trình, rồi giải phương trình bằng công thức nghiệm thu gọn...