Câu 18 trang 52 Sách bài tập (SBT) Toán 9 tập 2
Giải các phương trình sau bằng cách biến đổi chúng thành những phương trình với vế trái là một bình phương còn vế phải là một hằng số:
a) \({x^2} - 6x + 5 = 0\)
b) \({x^2} - 3x - 7 = 0\)
c) \(3{x^2} - 12x + 1 = 0\)
d) \(3{x^2} - 6x + 5 = 0\)
Giải
a) \({x^2} - 6x + 5 = 0 \Leftrightarrow {x^2} - 2.3x + 9 = 4 \Leftrightarrow {\left( {x - 3} \right)^2} = 4\)
\( \Leftrightarrow \left| {x - 3} \right| = 2\) \( \Leftrightarrow x - 3 = 2\) hoặc \(x - 3 = - 2\)⇔ x = 5 hoặc x = 1
Vậy phương trình có hai nghiệm: \({x_1} = 5;{x_2} = 1\)
b)\({x^2} - 3x - 7 = 0 \Leftrightarrow {x^2} - 2.{3 \over 2}x + {9 \over 4} = 7 + {9 \over 4} \Leftrightarrow {\left( {x - {3 \over 2}} \right)^2} = {{37} \over 4}\)
\( \Leftrightarrow \left| {x - {3 \over 2}} \right| = {{\sqrt {37} } \over 2} \Leftrightarrow x - {3 \over 2} = {{\sqrt {37} } \over 2}\) hoặc \(x - {3 \over 2} = - {{\sqrt {37} } \over 2}\)
\( \Leftrightarrow x = {{3 + \sqrt {37} } \over 2}\) hoặc \(x = {{3 - \sqrt {37} } \over 2}\)
Vậy phương trình có hai nghiệm: \({x_1} = {{3 + \sqrt {37} } \over 2};{x_2} = {{3 - \sqrt {37} } \over 2}\)
c)
\(\eqalign{
& 3{x^2} - 12x + 1 = 0 \Leftrightarrow {x^2} - 4x + {1 \over 3} = 0 \cr
& \Leftrightarrow {x^2} - 2.2x + 4 = 4 - {1 \over 3} \cr
& \Leftrightarrow {\left( {x - 2} \right)^2} = {{11} \over 3} \Leftrightarrow \left| {x - 2} \right| = {{\sqrt {33} } \over 3} \cr} \)
\( \Leftrightarrow x - 2 = {{\sqrt {33} } \over 3}\) hoặc \(x - 2 = - {{\sqrt {33} } \over 3}\)
\( \Leftrightarrow x = 2 + {{\sqrt {33} } \over 3}\) hoặc \(x = 2 - {{\sqrt {33} } \over 3}\)
Vậy phương trình có hai nghiệm: \({x_1} = 2 + {{\sqrt {33} } \over 3};{x_2} = 2 - {{\sqrt {33} } \over 3}\)
d)
\(\eqalign{
& 3{x^2} - 6x + 5 = 0 \Leftrightarrow {x^2} - 2x + {5 \over 3} = 0 \cr
& \Leftrightarrow {x^2} - 2x + 1 = 1 - {5 \over 3} \cr
& \Leftrightarrow {\left( {x - 1} \right)^2} = - {2 \over 3} \cr} \)
Vế trái \({\left( {x - 1} \right)^2} \ge 0\); vế phải \( - {2 \over 3} < 0\)
Vậy không có giá trị nào của x để \({\left( {x - 1} \right)^2} = - {2 \over 3}\)
Phương trình vô nghiệm.
Câu 19 trang 52 Sách bài tập (SBT) Toán 9 tập 2
Nhận thấy rằng phương trình tích \(\left( {x + 2} \right)\left( {x - 3} \right) = 0,\) hay phương trình bậc hai \({x^2} - x - 6 = 0,\) có hai nghiệm là \({x_1} = - 2,{x_2} = 3\). Tương tự, hãy lập những phương trình bậc hai mà nghiệm của mỗi phương trình là một trong những cặp số sau:
a) \({x_1} = 2,{x_2} = 5\)
b) \({x_1} = - {1 \over 2},{x_2} = 3\)
c) \({x_1} = 0,1;{x_2} = 0,2\)
d) \({x_1} = 1 - \sqrt 2 ,{x_2} = 1 + \sqrt 2 \)
Giải
a) Hai số 2 và 5 là nghiệm của phương trình:
\(\left( {x - 2} \right)\left( {x - 5} \right) = 0 \Leftrightarrow {x^2} - 7x + 10 = 0\)
b) Hai số \( - {1 \over 2}\) và 3 là nghiệm của phương trình:
\(\eqalign{
& \left[ {x - \left( { - {1 \over 2}} \right)} \right]\left( {x - 3} \right) = 0 \cr
& \Leftrightarrow \left( {x + {1 \over 2}} \right)\left( {x - 3} \right) = 0 \cr
& \Leftrightarrow 2{x^2} - 5x - 3 = 0 \cr} \)
c) Hai số 0,1 và 0,2 là nghiệm của phương trình:
\(\eqalign{
& \left( {x - 0,1} \right)\left( {x - 0,2} \right) = 0 \cr
& \Leftrightarrow {x^2} - 0,3x + 0,02 = 0 \cr} \)
d) Hai số \(1 - \sqrt 2 \) và \(1 + \sqrt 2 \) là nghiệm của phương trình:
\(\eqalign{
& \left[ {x - \left( {1 - \sqrt 2 } \right)} \right]\left[ {x - \left( {1 + \sqrt 2 } \right)} \right] = 0 \cr
& \Leftrightarrow {x^2} - \left( {1 + \sqrt 2 } \right)x - \left( {1 - \sqrt 2 } \right)x + \left( {1 - \sqrt 2 } \right)\left( {1 + \sqrt 2 } \right) = 0 \cr
& \Leftrightarrow {x^2} - 2x - 1 = 0 \cr} \)
Câu 3.1 trang 52 Sách bài tập (SBT) Toán 9 tập 2
Đưa các phương trình sau về dạng \(a{x^2} + bx + c = 0\) và xác định các hệ số a, b, c:
a) \(4{x^2} + 2x = 5x - 7\)
b) \(5x - 3 + \sqrt 5 {x^2} = 3x - 4 + {x^2}\)
c) \(m{x^2} - 3x + 5 = {x^2} - mx\)
d) \(x + {m^2}{x^2} + m = {x^2} + mx + m + 2\)
Giải
a) \(4{x^2} + 2x = 5x - 7 \Leftrightarrow 4{x^2} - 3x + 7 = 0\) có a = 4, b = -3, c = 7
b)
\(\eqalign{
& 5x - 3 + \sqrt 5 {x^2} = 3x - 4 + {x^2} \cr
& \Leftrightarrow \left( {\sqrt 5 - 1} \right){x^2} + 2x + 1 = 0 \cr
& a = \sqrt 5 - 1;b = 2;c = 1 \cr} \)
c) \(m{x^2} - 3x + 5 = {x^2} - mx \Leftrightarrow \left( {m - 1} \right){x^2} - \left( {3 - m} \right)x + 5 = 0\)
\(m - 1 \ne \) nó là phương trình bậc hai có a = m – 1; b = - (3 – m ); c = 5
d)
\(\eqalign{
& x + {m^2}{x^2} + m = {x^2} + mx + m + 2 \cr
& \Leftrightarrow \left( {{m^2} - 1} \right){x^2} + \left( {1 - m} \right)x - 2 = 0 \cr} \)
\({m^2} - 1 \ne 0\) nó là phương trình bậc hai có \(a = {m^2} - 1,b = 1 - m,c = - 2\)
Giaibaitap.me
Giải bài tập trang 52, 53 bài 3 Phương trình bậc hai một ẩn Sách bài tập (SBT) Toán 9 tập 2. Câu 3.2: Giải các phương trình sau bằng cách biến đổi chúng thành những phương trình với vế trái là một bình phương còn vế phải là một hằng số...
Giải bài tập trang 53 bài 4 Công thức nghiệm của phương trình bậc hai Sách bài tập (SBT) Toán 9 tập 2. Câu 20: Xác định các hệ số a, b, c; tính biệt thức ∆ rồi tìm nghiệm của các phương trình...
Giải bài tập trang 54 bài 4 Công thức nghiệm của phương trình bậc hai Sách bài tập (SBT) Toán 9 tập 2. Câu 24: Đối với mỗi phương trình sau, hãy tìm giá trị của m để phương trình có nghiệm kép...
Giải bài tập trang 54, 55 bài 4 Công thức nghiệm của phương trình bậc hai Sách bài tập (SBT) Toán 9 tập 2. Câu 4.1: Giải các phương trình sau bằng cách (chuyển các số hạng tự do sang vế phải bằng công thức nghiệm) và so sánh kết quả tìm được...