Bài 1 trang 7 sgk toán 7 tập 1
Điền kí hiệu (∈, ∉, ⊂) thích hợp vào ô vuông
- 3 N ; -3 Z; -3 Q
Z; Q; N Z Q
Lời giải:
- 3 ∉ N - 3 ∈ Z -3 ∈ Q
∉ Z ∈ Q N ⊂ Z ⊂ Q
Bài 2 trang 7 sgk toán 7 tập 1
Trong các phân số sau, những phân số nào biểu diễn số hữu tỉ \(frac{3}{-4}\):
\(\frac{-12}{15} ; \frac{-15}{20}; \frac{24}{-32}; \frac{-20}{28}; \frac{-27}{36}\)
Lời giải:
\(\frac{24}{-32} = \frac{24:8}{-32:8} = \frac{3}{-4}\)
\(\frac{-15}{20} = \frac{-15:(-5)}{20:(-5)} = \frac{3}{-4}\)
\(\frac{27}{-36} = \frac{-27:(-9)}{36:(-9)} = \frac{3}{-4}\)
\(\frac{-12}{15} \neq \frac{3}{-4} ; \frac{-20}{28} \neq \frac{3}{-4}\)
Vậy những phân số biểu diễn số hữu tỉ \(\frac{3}{-4}\) là : \(\frac{-15}{20}; \frac{24}{-32}; \frac{-27}{36}\)
Bài 3 trang 8 sgk toán 7 tập 1
So sánh các số hữu tỉ:
a)\(x = \frac{2}{-7}\) và \(y = \frac{-3}{11}\)
b) \(x = \frac{-213}{300}\) và \(y = \frac{18}{-25}\)
c) x = -0,75 và \(y = \frac{-3}{4}\)
Lời giải:
a)\(x = \frac{2}{-7} = \frac{-22}{77}; y = \frac{-3}{11} = \frac{-21}{77}\)
Vì -22 < -21 và 77> 0 nên x <y
b)\(y = \frac{18}{-25} = \frac{18(-12)}{-25(-12)} = \frac{-216}{300}; x = \frac{-213}{300}\)
Vì -216 < -213 và 300 > 0 nên y < x
c)\(x = -0,75 = \frac{-75}{100} = \frac{-3}{4}; y = \frac{-3}{4}\)
Vậy x=y
Bài 4 trang 8 sgk toán 7 tập 1
So sánh số hữu tỉ \(\frac{a}{b}\) ( a,b ∈ Z, b # 0) với số 0 khi a, b cùng dấu và khi a, b khác dấu
Lời giải:
Với a, b ∈ Z, b> 0
- Khi a , b cùng dấu thì \(\frac{a}{b}\) > 0
- Khi a,b khác dấu thì \(\frac{a}{b}\) < 0
Tổng quát: Số hữu tỉ \(\frac{a}{b}\) ( a,b ∈ Z, b # 0) dương nếu a,b cùng dấu, âm nếu a, b khác dấu, bằng 0 nếu a = 0
Bài 5 trang 8 sgk toán 7 tập 1
Giả sử x = \(\frac{a}{m}\) ; y = \(\frac{b}{m}\) ( a, b, m ∈ Z, b # 0) và x < y. Hãy chứng tỏ rằng nếu chọn z = \(\frac{a + b}{2m}\) thì ta có x < z < y
Lời giải:
Theo đề bài ta có x = \(\frac{a}{m}\), y = \(\frac{b}{m}\) ( a, b, m ∈ Z, m > 0)
Vì x < y nên ta suy ra a< b
Ta có : x = \(\frac{2a}{2m}\), y = \(\frac{2b}{2m}\); z = \(\frac{a + b}{2m}\)
Vì a < b => a + a < a +b => 2a < a + b
Do 2a< a +b nên x < z (1)
Vì a < b => a + b < b + b => a + b < 2b
Do a+b < 2b nên z < y (2)
Từ (1) và (2) ta suy ra x < z< y
Giaibaitap.me
Giải bài tập trang 10 bài 2 Cộng, trừ số hữu tỉ Sách giáo khoa (SGK) Toán 7. Câu 6: Tính...
Giải bài 11, 12, 13 trang 12 bài 3 Nhân, chia số hữu tỉ Sách giáo khoa (SGK) Toán 7. Câu 11: Tính...
Giải bài 11, 12, 13 trang 12 bài 3 Nhân, chia số hữu tỉ Sách giáo khoa (SGK) Toán 7. Câu 14: Điền các số hữu tỉ thích hợp vào ô trống...
Giải bài tập trang 15 bài 4 Giá trị tuyệt đối của một số hữu tỉ. Cộng, trừ, nhân, chia số thập phân Sách giáo khoa (SGK) Toán 7. Câu 17: Trong các khẳng định sau đây, khẳng định nào đúng...