Trang chủ
Loigiaihay.com 2025

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết
Bình chọn:
4 trên 4 phiếu

Giải bài tập Toán 10

CHƯƠNG II. TÍCH VÔ HƯỚNG CỦA HAI VECTƠ VÀ ỨNG DỤNG

Giải bài tập trang 62 bài ôn tập chương II - tích vô hướng của hai vectơ và ứng dụng Sách giáo khoa (SGK) Hình học 10. Câu 9: Tính bán kính đường tròn ngoại tiếp tam giác đó...

Câu 9 trang 62 SGK Hình học 10

Cho tam giác \(ANC\) có góc \(A = 60^0, BC = 6\). Tính bán kính đường tròn ngoại tiếp tam giác đó.

Trả lời:

Sử dụng định lí sin, ta có:

 \({{BC} \over {\sin A}} = 2R \Rightarrow R = {{BC} \over {2\sin A}} = {6 \over {2.\sin {{60}^0}}} = {6 \over {\sqrt 3 }} = 2\sqrt 3 \)

 


Câu 10 trang 62 SGK Hình học 10

Cho tam giác \(ABC\) có \(a = 12, b = 16, c = 20\). Tính diện tích \(S\)  tam giác,  chiều cao \(h_a\), các bán kính \(R, r\) của các đường tròn ngoại tiếp, nội  tiếp tam giác và đường trung tuyến \(m_a\) của tam giác.

Trả lời:

*Tính diện tích: Sử dụng công thức Hê-rông với:

\(\eqalign{
& p = {{12 + 16 + 20} \over 2} = 24 \cr
& S = \sqrt {24(24 - 12)(24 - 16)(24 - 20)} = \sqrt {24.12.8.4} = 96(dvdt) \cr} \)

*Tính \(h_a\): Ta có:

\(\eqalign{
& S = {1 \over 2}a{h_a} \Leftrightarrow 96 = {1 \over 2}12.{h_a} \Leftrightarrow 96 = 6.{h_a} \cr
& \Leftrightarrow {h_a} = {{96} \over 6} = 16 \cr} \)

*Tính \(R\)

Ta có: \(S = {{abc} \over {4R}} \Leftrightarrow R = {{abc} \over {4S}} = {{12.16.20} \over {4.96}} = 10\)

*Tính \(r\)

Ta có: \(S = p.r \Leftrightarrow r = {S \over p} = {{96} \over {24}} = 4\)

*Tính \(m_a\). Ta có:

\(\eqalign{
& {m_a}^2 = {{2({b^2} + {c^2}) - {a^2}} \over 4} = {{2({{16}^2} + {{20}^2}) - {{12}^2}} \over 4} = 292 \cr
& \Leftrightarrow {m_a}^2 = \sqrt {292} \approx 17,09 \cr} \)

 


Câu 11 trang 62 SGK Hình học 10

Trong tập hợp các tam giác có hai cạnh là \(a\) và \(b\). Tìm tam giác có diện tích lớn nhất.

Trả lời:

Theo công thức tínhg diện tích tam giác, ta có: \(S = {1 \over 2}ab\sin C\)

Vì \(a, b\) không đổi nên diện tích \(S\) lớn nhất khi \(\sin C\) lớn nhất và vì \(-1 ≤ \sin C ≤ 1\) nên \(\sin C\) lớn nhất khi \(\sin C = 1 ⇒\) \(\widehat C = 90^0\).

Vậy trong tập hợp các tam giác có hai cạnh \(a\) và \(b\) thì tam giác vuông đỉnh \(C\) có diện tích lớn nhất.

 

Giaibaitap.me

Góp ý - Báo lỗi

Vấn đề em gặp phải là gì ?

Hãy viết chi tiết giúp Giaibaitap.me

Bài giải mới nhất

Bài giải mới nhất các môn khác