Bài 4 trang 83 sgk hình học 10
Lập phương trình đường tròn tiếp xúc với hai trục tọa độ \(Ox, Oy\) và đi qua điểm \(M(2 ; 1)\)
Giải
Đường tròn tiếp xúc với hai trục tọa độ nên tâm \(I\) của nó phải cách đều hai trục tọa độ. Đường tròn này lại đi qua điểm \(M(2 ; 1)\), mà điểm \(M\) này lại là góc phần tư thứ nhất nên tọa độ của tâm \(I\) phải là số dương.
\(x_I=y_I>0\)
gọi \(x_I=y_I= a\). Như vậy phương trình đường tròn cần tìm là :
\({\left( {2{\rm{ }} - {\rm{ }}a} \right)^2} + {\left( {1{\rm{ }}-{\rm{ }}a} \right)^2} = {a^2}{\rm{ }}\)
\({a^2} - 6a + 5 = 0 \Leftrightarrow \left[ \matrix{
a = 1 \hfill \cr
a = 5 \hfill \cr} \right.\)
Từ đây ta được hai đường tròn thỏa mãn điều kiện
+) Với \(a = 1\) \( \Rightarrow {\left( {x{\rm{ }} - {\rm{ }}1{\rm{ }}} \right)^2} + {\rm{ }}{\left( {y{\rm{ }}-{\rm{ }}1} \right)^2}{\rm{ }} = {\rm{ }}1({C_1})\)
+) Với \(a = 5\) \(\Rightarrow {\left( {x - 5{\rm{ }}} \right)^2} + {\rm{ }}{\left( {y - 5} \right)^2}{\rm{ }} = {\rm{ 25}}({C_2})\)
Bài 5 trang 83 sgk hình học 10
Lập phương trình của đường tròn tiếp xúc với các trục tọa độ và có tâm ở trên đường thẳng \(d : 4x – 2y – 8 = 0\)
Giải
Vì đường tròn cần tìm tiếp xúc với hai trục tọa độ nên các tọa độ \(x_I,y_I\) của tâm \(I\) có thể là \(x_I=y_I\) hoặc \(x_I=-y_I\)
Đặt \(x_I=a\) thì ta có hai trường hợp \(I(a ; a)\) hoặc \(I(a ; -a)\). Ta có hai khả năng:
Vì \(I\) nằm trên đường thẳng \(4x – 2y – 8 = 0\) nên tọa độ \(I(a ; a)\) là ngiệm đúng của phương trình đường thẳng \(4x – 2y – 8 = 0\), ta có:
\(4a – 2a – 8 = 0 \Rightarrow a = 4\)
Đường tròn cần tìm có tâm \(I(4; 4)\) và bán kính \(R = 4\) có phương trình là:
\({(x - 4)^2} + {(y - 4)^2} = {4^2} \Leftrightarrow {(x - 4)^2} + {(y - 4)^2} = 16\)
+ Trường hợp \(I(a; -a)\):
\(4a + 2a - 8 = 0 \Rightarrow a = \frac{4}{3}\)
Ta được đường tròn có phương trình là:
\((x -\frac{4}{3})^{2}+ (y +\frac{4}{3})^{2}= (\frac{4}{3})^{2}\)
\( \Leftrightarrow {\left( {x - {4 \over 3}} \right)^2} + {\left( {y + {4 \over 3}} \right)^2} = {{16} \over 9}\)
Bài 6 trang 84 sgk hình học 10
Cho đường tròn \((C)\) có phương trình:
\({x^2} + {\rm{ }}{y^2} - {\rm{ }}4x{\rm{ }} + {\rm{ }}8y{\rm{ }} - {\rm{ }}5{\rm{ }} = {\rm{ }}0\)
a) Tìm tọa độ tâm và bán kính của \((C)\)
b) Viết phương trình tiếp tuyến với \((C)\) đi qua điểm \(A(-1; 0)\)
c) Viết phương trình tiếp tuyến với \((C)\) vuông góc với đường thẳng \(3x – 4y + 5 = 0\)
Giải
a) \({x^2} + {\rm{ }}{y^2} - {\rm{ }}4x{\rm{ }} + {\rm{ }}8y{\rm{ }} - {\rm{ }}5{\rm{ }} = {\rm{ }}0\)
\( \Leftrightarrow {x^2} - 2.x.2 + {2^2} + {y^2} + 2.y.4 + {4^2} = 25 \)
\(\Leftrightarrow {\left( {x - 2} \right)^2} + {\left( {y + 4} \right)^2} = {5^2}\)
Tâm \(I(2 ; -4)\), bán kính \(R = 5\)
b)
Thay tọa độ \(A(-1 ; 0)\) vào vế trái, ta có :
\((-1- 2 )^2 + (0 + 4)^2 = 3^2+4^2= 25\)
Vậy \(A(-1 ;0)\) là điểm thuộc đường tròn.
\(\overrightarrow {IA} ( - 3;4)\)
Phương trình tiếp tuyến với đường tròn tại \(A\) là:
\(-3(x +1) +4(y -0) =0 \Leftrightarrow 3x - 4y + 3 = 0\)
c)
Đường thẳng \(3x – 4y + 5 = 0\) có véc tơ pháp tuyến \(\overrightarrow n(3;-4)\)
Theo giả thiết tiếp tuyến vuông góc với đường thẳng \(3x – 4y + 5 = 0\) nên tiếp tuyến có véc tơ pháp tuyến là \(\overrightarrow {n'}(4;3)\)
Phương trình tiếp tuyến có dạng là: \(4x+3y+c=0\)
Khoảng cách từ tâm \(I\) đến tiếp tuyến bằng bán kính \(R=5\) do đó ta có:
\({{|4.2 + 3.( - 4) + c|} \over {\sqrt {{4^2} + {3^2}} }} = 5 \Leftrightarrow |c - 4| = 25\)
\(\Leftrightarrow \left[ \matrix{
c - 4 = 25 \hfill \cr
c - 4 = - 25 \hfill \cr} \right. \Leftrightarrow \left[ \matrix{
c = 29 \hfill \cr
c = - 21 \hfill \cr} \right.\)
Vậy có hai phương trình tiếp tuyến thỏa mãn yêu cầu bài toán là:
\(4x+3y+29=0\) và \(4x+3y-21=0\).
Giaibaitap.me
Giải bài tập trang 88 bài 3 phương trình đường Elip Sách giáo khoa (SGK) Hình học 10. Câu 1: Xác đinh độ dài các trục, tọa độ tiêu điểm , tọa độ các đỉnh và vẽ các elip có phương trình sau...
Giải bài tập trang 93 bài ôn tập chương III - Phương pháp tọa độ trong mặt phẳng Sách giáo khoa (SGK) Hình học 10. Câu 1: Tìm phương trình các đường thẳng chứa các cạnh còn lại...
Giải bài tập trang 93 bài ôn tập chương III - Phương pháp tọa độ trong mặt phẳng Sách giáo khoa (SGK) Hình học 10. Câu 5: Tìm tọa độ điểm ...
Giải bài tập trang 94 bài ôn tập chương III - Phương pháp tọa độ trong mặt phẳng Sách giáo khoa (SGK) Hình học 10. Câu 1: Phương trình nào sau đây là phương trình đường cao của tam giác vẽ từ...