Bài 1 trang 148 sgk đại số 10
Có cung \(α\) nào mà \(\sinα\) nhận các giá trị tương ứng sau đây không?
a) \(-0,7\); b) \( \frac{4}{3}\)
c) \(-\sqrt2\); d)\( \frac{\sqrt{5}}{2}\)
Giải
a) \(-1 ≤ -0,7 ≤ 1\). Có cung \(α\) mà \(sin α = -0,7\)
b) \( \frac{4}{3}> 1\). Không có cung \(α\) có \(\sin\) nhận giá trị \( \frac{4}{3}\)
c) Không. Vì \(-\sqrt2 < -1\)
d) Không. Vì \( \frac{\sqrt{5}}{2} > 1\)
Bài 2 trang 148 sgk đại số 10
Các đẳng thức sau có thể đồng thời xảy ra không?
a) \(\sin α = \frac{\sqrt{2}}{3}\) và \(\cos α = \frac{\sqrt{3}}{3}\);
b) \(\sinα = -\frac{4}{5}\) và \(\cosα = -\frac{3}{5}\)
Giải
a) Không. Bởi vì \( \left ( \frac{\sqrt{2}}{3} \right )^{2} +\left ( \frac{\sqrt{3}}{3} \right )^{2}< 1\)
b) Có thể đồng thời xảy ra, vì \( (-\frac{4}{5})^{2}+(-\frac{3}{5})^{2}\) = 1
c) Không. Bởi vì \((0,7)^2+(0,3)^2=0,58<1\)
Bài 3 trang 148 sgk đại số 10
Cho \(0 < α < \frac{\pi }{2}\). Xác định dấu của các giá trị lượng giác
a) \(\sin(α - π)\); b) \(\cos\left( \frac{3\pi }{2}- α\right)\)
c) \(\tan(α + π)\); d) \(\cot\left(α + \frac{\pi }{2}\right)\)
Giải
Với \(0 < α < \frac{\pi}{2}\):
a) \(\sin(α - π) < 0\); b) \(\cos\left( \frac{3\pi }{2}- α\right)< 0\);
c) \(\tan(α + π) > 0\); d) \(\cot\left(α + \frac{\pi }{2}\right) < 0\).
Bài 4 trang 148 sgk đại số 10
Bài 4. Tính các giá trị lượng giác của góc \(α\), nếu:
a) \(\cosα = \frac{4}{13}\) và \(0 < α < \frac{\pi }{2}\);
b) \(\sinα = -0,7\) và \(π < α < \frac{3\pi }{2}\);
c) \(\tan α = -\frac{15}{7}\) và \( \frac{\pi }{2} < α < π\);
d) \(\cotα = -3\) và \( \frac{3\pi }{2} < α < 2π\).
Giải
a) Do \(0 < α < \frac{\pi}{2}\) nên \(\sinα > 0, \tanα > 0, \cotα > 0\)
\(\sinα = \sqrt{1-(\frac{4}{13})^{2}}=\frac{\sqrt{153}}{13}=\frac{3\sqrt{17}}{13}\)
\(\cotα = (\frac{4}{13}):\frac{3\sqrt{17}}{13}=\frac{4\sqrt{17}}{51}\); \(\tanα = \frac{3\sqrt{17}}{4}\)
b) \(π < α < \frac{3\pi }{2}\) nên \(\sinα < 0, \cosα < 0, \tanα > 0, \cotα > 0\)
\(\cosα = -\sqrt{(1 - sin^2 α)} = -\sqrt{(1 - 0,49) }= -\sqrt{0,51} ≈ -0,7141\)
\(\tanα ≈ 0,9802; \cotα ≈ 1,0202\).
c) \( \frac{\pi }{2} < α < π\) nên \(\sinα > 0, \cosα < 0, \tanα < 0, \cotα < 0 \)
\(\cosα = -\sqrt{\frac{1}{1+tan^{2}\alpha }}=-\sqrt{\frac{1}{1+(\frac{15}{7})^{2}}}=-\frac{7}{274}≈ -0,4229\).
\(\sinα = \sqrt{\frac{1}{1+cot^{2}\alpha }}=\sqrt{\frac{1}{1+(\frac{7}{15})^{2}}}=\frac{15}{\sqrt{274}}=0,9062\)
\(\cotα = - \frac{7}{15}\)
d) Vì \( \frac{3\pi}{2} < α < 2π\) nên \(\sinα < 0, \cosα > 0, \tanα < 0, \cotα < 0\)
Ta có: \(\tanα = \frac{1}{\cot\alpha }=-\frac{1}{3}\)
\(\cosα = \sqrt{\frac{1}{1+tan^{2}\alpha }}=\sqrt{\frac{1}{1+(\frac{1}{3}^{2})}}=\frac{3}{\sqrt{10}}=0,9487\)
Bài 5 trang 148 sgk đại số 10
Bài 5. Tính \(α\), biết:
a) \(\cosα = 1\); b) \(\cosα = -1\)
c) \(\cosα = 0\); d) \(\sinα = 1\)
e) \(\sinα = -1\); f) \(\sinα = 0\),
Giải
a) \(α = k2π, k \in \mathbb Z\)
b) \(α = (2k + 1)π, k \mathbb Z\)
c) \(α = \frac{\pi}{2}+ kπ, k \in\mathbb Z\)
d) \(α = \frac{\pi }{2} + k2π, k\in \mathbb Z\)
e) \(α = \frac{3\pi }{2}+ k2π, k \in\mathbb Z\)
f) \(α = kπ, k \in\mathbb Z\)
Giaibaitap.me
Giải bài tập trang 154 bài 3 Công thức lượng giác Sách giáo khoa (SGK) Đại số 10. Câu 1: Tính...
Giải bài tập trang 154, 155 bài 3 Công thức lượng giác Sách giáo khoa (SGK) Đại số 10. Câu 5: Tính ...
Giải bài tập trang 155 bài ôn tập chương VI - Cung và góc lượng giác công thức lượng giác Sách giáo khoa (SGK) Đại số 10. Câu 1: Hãy nêu định nghĩa của sinα, cosα và giải thích tại sao ta có...
Giải bài tập trang 156 bài ôn tập chương VI - Cung và góc lượng giác công thức lượng giác Sách giáo khoa (SGK) Đại số 10. Câu 5: Không sử dụng máy tính, hãy tính...