Trang chủ
Loigiaihay.com 2025

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết
Bình chọn:
3.5 trên 14 phiếu

Giải bài tập Toán 9

CHƯƠNG IV - HÀM SỐ y = ax^2 (a ≠ 0). PHƯƠNG TRÌNH BẬC HAI MỘT ẨN

Giải bài tập trang 53, 54 bài 6 hệ thức Vi-et và ứng dụng SGK Toán 9 tập 2. Câu 28: Tìm hai số u và v trong mỗi trường hợp sau...

Bài 28 trang 53 sgk Toán 9 tập 2

Bài 28. Tìm hai số u và v trong mỗi trường hợp sau:

a) \(u + v = 32, uv = 231\);            

b) \(u + v = -8, uv = -105\);

c) \(u + v = 2, uv = 9\)

Bài giải:

a) \(u\) và \(v\) là nghiệm của phương trình: \({x^2}-{\rm{ }}32x{\rm{ }} + {\rm{ }}231{\rm{ }} = {\rm{ }}0\)

\(\Delta {\rm{ }} = {\rm{ ( - }}16{)^2}-{\rm{ }}231.1{\rm{ }} = {\rm{ }}256{\rm{ }}-{\rm{ }}231{\rm{ }} = {\rm{ }}25,{\rm{ }}\sqrt {\Delta '} {\rm{ }} = {\rm{ }}5\)

\({\rm{ }}{x_1} = {\rm{ }}21,{\rm{ }}{x_2} = {\rm{ }}11\)

Vậy \(u = 21, v = 11\) hoặc \(u = 11, v = 21\)

b) \(u\), \(v\) là nghiệm của phương trình:

\({{x^2} + {\rm{ }}8x{\rm{ }}-{\rm{ }}105{\rm{ }} = {\rm{ }}0}\)

\(\Delta {\rm{ }} = {4^2}{\rm{ - 1}}{\rm{.( - 105) =  }}16{\rm{ }} + {\rm{ }}105{\rm{ }} = {\rm{ }}121,{\rm{ }}\sqrt {\Delta '} {\rm{ }} = {\rm{ }}11{\rm{ }}\)

\({x_1}{\rm{ }} = {\rm{ }} - 4{\rm{ }} + {\rm{ }}11{\rm{ }} = {\rm{ }}7\), \({{x_2} = {\rm{ }} - 4{\rm{ }}-{\rm{ }}11{\rm{ }} = {\rm{ }} - 15}\)

Vậy \(u = 7, v = -15\) hoặc \(u = -15, v = 7\).

c) Vì \({{2^{2}}-{\rm{ }}4{\rm{ }}.{\rm{ }}9{\rm{ }} < {\rm{ }}0}\) nên không có giá trị nào của \(u\) và \(v\) thỏa mãn điều kiện đã cho.

 


Bài 29 trang 54 sgk Toán 9 tập 2

Bài 29. Không giải phương trình, hãy tính tổng và tích các nghiệm (nếu có) của mỗi phương trình sau:

a) \(4{x^2} + {\rm{ }}2x{\rm{ }}-{\rm{ }}5{\rm{ }} = {\rm{ }}0\);                     

b) \(9{x^2}-{\rm{ }}12x{\rm{ }} + {\rm{ }}4{\rm{ }} = {\rm{ }}0\);

c) \(5{x^2} + {\rm{ }}x{\rm{ }} + {\rm{ }}2{\rm{ }} = {\rm{ }}0\);                      

d) \(159{x^2}-{\rm{ }}2x{\rm{ }}-{\rm{ }}1{\rm{ }} = {\rm{ }}0\)

 Bài giải:

a) Phương trình \(4{x^2} + {\rm{ }}2x{\rm{ }}-{\rm{ }}5{\rm{ }} = {\rm{ }}0\) có nghiệm vì \(a = 4, c = -5\) trái dấu nhau nên

\({x_1} + {x_2} = {\rm{ }} - {1 \over 2},{x_1}{x_2} =  - {5 \over 4}\)

b) Phương trình \(9{x^2}-{\rm{ }}12x{\rm{ }} + {\rm{ }}4{\rm{ }} = {\rm{ }}0\) có \(\Delta' = 36 - 36 = 0\)

\({x_1} + {x_2} = {{12} \over 9} = {4 \over 3},{x_1}{x_2} = {4 \over 9}\)

c) Phương trình \(5{x^2} + {\rm{ }}x{\rm{ }} + {\rm{ }}2{\rm{ }} = {\rm{ }}0\) có  

\(\Delta =\) \({1^2} - {\rm{ }}4{\rm{ }}.{\rm{ }}5{\rm{ }}.{\rm{ }}2{\rm{ }} = {\rm{ }} - 39{\rm{ }} < {\rm{ }}0\)

Phương trình vô nghiệm, nên không tính được tổng và tích các nghiệm.

d) Phương trình \(159{x^2}-{\rm{ }}2x{\rm{ }}-{\rm{ }}1{\rm{ }} = {\rm{ }}0\) có hai nghiệm phân biệt vì \(a\) và \(c\) trái dấu

\({x_1} + {x_2} = {\rm{ }}{2 \over {159}},{x_1}{x_2} =  - {1 \over {159}}\)

 

Bài 30 trang 54 sgk Toán 9 tập 2

Bài 30. Tìm giá trị của m để phương trình có nghiệm, rồi tính tổng và tích các nghiệm theo m.

a) \({x^2}-{\rm{ }}2x{\rm{ }} + {\rm{ }}m{\rm{ }} = {\rm{ }}0\);                       

b) \({x^2}-{\rm{ }}2\left( {m{\rm{ }}-{\rm{ }}1} \right)x{\rm{ }} + {\rm{ }}{m^2} = {\rm{ }}0\)

Bài giải

a) Phương trình \({x^2}-{\rm{ }}2x{\rm{ }} + {\rm{ }}m{\rm{ }} = {\rm{ }}0\) có nghiệm khi \(\Delta '{\rm{ }} = {\rm{ }}1{\rm{ }} - {\rm{ }}m{\rm{ }} \ge {\rm{ }}0\) hay khi \(m ≤ 1\)

Khi đó \({x_{1}} + {\rm{ }}{x_{2}} = {\rm{ }}2\), \({\rm{ }}{x_{1}}.{\rm{ }}{x_2} = {\rm{ }}m\)

b) Phương trình \({x^2}-{\rm{ }}2\left( {m{\rm{ }}-{\rm{ }}1} \right)x{\rm{ }} + {\rm{ }}{m^2} = {\rm{ }}0\) có nghiệm khi

  \(\Delta '{\rm{ }} = {\rm{ }}{m^{2}} - {\rm{ }}2m{\rm{ }} + {\rm{ }}1{\rm{ }}-{\rm{ }}{m^2} = {\rm{ }}1{\rm{ }}-{\rm{ }}2m{\rm{ }} \ge {\rm{ }}0\) 

hay khi \(m  ≤\) \(\frac{1}{2}\)

Khi đó \({x_{1}} + {\rm{ }}{x_2} = {\rm{ }}2\left( {m{\rm{ }}-{\rm{ }}1} \right)\), \({\rm{ }}{x_{1}}.{\rm{ }}{x_2} = {\rm{ }}{m^2}\)

Giaibaitap.me

Góp ý - Báo lỗi

Vấn đề em gặp phải là gì ?

Hãy viết chi tiết giúp Giaibaitap.me

Bài giải mới nhất

Bài giải mới nhất các môn khác