Trang chủ
Loigiaihay.com 2025

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết
Bình chọn:
4 trên 50 phiếu

Giải bài tập Toán 9

CHƯƠNG I. CĂN BẬC HAI. CĂN BẬC BA

Giải bài tập trang 16 bài 3 liên hệ giữa phép nhân và phép khai phương SGK Toán 9 tập 1. Câu 25: Tìm x biết...

Bài 25 trang 16 sgk Toán 9 - tập 1

Bài 25. Tìm x biết:

a) \( \sqrt{16x}\) = 8;                     b) \( \sqrt{4x} = \sqrt{5}\);

c) \( \sqrt{9(x - 1)}\) = 21;             d) \( \sqrt{4(1 - x)^{2}}\) - 6 = 0.

Hướng dẫn giải:

a)

Điều kiện: \(x\geq 0\)

Khi đó:

\(\sqrt{16x}= 8\Leftrightarrow 16x=64\Leftrightarrow x=\frac{64}{16}=4\)

b)

Điều kiện: \(x\geq 0\)

Khi đó:

\(\sqrt{4x} = \sqrt{5}\Leftrightarrow 4x=5\Leftrightarrow x=\frac{5}{4}\)

c)

Điều kiện: \(x\geq 1\)

Khi đó:

\(\sqrt{9(x - 1)}= 21\)

\(\Leftrightarrow 9(x-1) = 441\)

\(\Leftrightarrow x-1=\frac{441}{9}=49\)

\(\Leftrightarrow x=50\)

d) Điều kiện: Vì \( (1 - x)^{2}\) ≥ 0 với mọi giá trị của x nên \( \sqrt{4(1 - x)^{2}}\) có nghĩa với mọi giá trị của x.

         \( \sqrt{4(1 - x)^{2}}\) - 6 = 0 \( \Leftrightarrow\) √4.\( \sqrt{(1 - x)^{2}}\) - 6 = 0

         \( \Leftrightarrow\) 2.│1 - x│= 6 \( \Leftrightarrow\) │1 - x│= 3.

Ta có 1 - x ≥ 0 khi x ≤ 1. Do đó:

         khi x ≤ 1 thì │1 - x│ = 1 - x.

         khi x > 1 thì │1 - x│ = x -1.

Để giải phương trình │1 - x│= 3, ta phải xét hai trường hợp:

- Khi x ≤  1, ta có: 1 - x = 3 \( \Leftrightarrow\) x = -2.

Vì -2 < 1 nên x = -2 là một nghiệm của phương trình.

- Khi x > 1, ta có: x - 1 = 3 \( \Leftrightarrow\) x = 4.

Vì 4 > 1 nên x = 4 là một nghiệm của phương trình.

Vậy phương trình có hai nghiệm là x = -2 và x = 4.

 

Bài 26 trang 16 sgk Toán 9 - tập 1

Bài 26. a) So sánh \( \sqrt{25 + 9}\) và \( \sqrt{25} + \sqrt{9}\);

          b) Với a > 0 và b > 0, chứng minh \( \sqrt{a + b}\) < √a + √b.

Hướng dẫn giải:

a) Ta có: \(\sqrt{25 + 9}=\sqrt{34}\)

\(\sqrt{25} + \sqrt{9}=5+3=8=\sqrt{64}\)

Vậy: \(\sqrt{25 + 9}<\sqrt{25} + \sqrt{9}\)

b) Ta có: \( (\sqrt{a + b})^{2} = a + b\)  và

             \( (\sqrt{a + b})^{2}\) = \( \sqrt{a^{2}}+ 2\sqrt a .\sqrt b +\sqrt{b^{2}}\)

                               \( = a + b + 2\sqrt a .\sqrt b \)

Vì a > 0, b > 0 nên \(\sqrt a .\sqrt b > 0.\)

Do đó \( \sqrt{a + b} < \sqrt a .\sqrt b\)

 


Bài 27 trang 16 sgk Toán 9 - tập 1

Bài 27. So sánh

a) 4 và \(2\sqrt{3}\);           b) \(-\sqrt{5}\) và -2

Hướng dẫn giải:

a)

Ta có: \(4=\sqrt{16}\)

\(2\sqrt{3}=\sqrt{2^2.3}=\sqrt{12}\)

Nên: \(16>12\Leftrightarrow \sqrt{16}>\sqrt{12}\)

Vậy: \(4>2\sqrt{3}\)

b)

Số càng lớn khi biểu thức trong căn càng lớn. Nhưng đối với số âm: số âm càng bé khi giá trị tuyệt đối càng lớn.

Ta có:

\(2=\sqrt{4}\)

\(\Rightarrow \sqrt{5}>\sqrt{4}\Rightarrow -\sqrt{5}<-\sqrt{4}\)

Vậy \(-\sqrt{}5 < -2\)

Giaibaitap.me

Góp ý - Báo lỗi

Vấn đề em gặp phải là gì ?

Hãy viết chi tiết giúp Giaibaitap.me

Bài giải mới nhất

Bài giải mới nhất các môn khác