Trang chủ
Loigiaihay.com 2025

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết
Bình chọn:
4.9 trên 7 phiếu

Giải sách bài tập Toán 9

CHƯƠNG III: HỆ HAI PHƯƠNG TRÌNH BẬC NHẤT HAI ẨN

Giải bài tập trang 9 bài 3 giải hệ phương trình bằng phương pháp thế Sách bài tập (SBT) Toán 9 tập 2. Câu 16: Giải các hệ phương trình sau bằng phương pháp thế...

Câu 16 trang 9 Sách bài tập (SBT) Toán 9 tập 2

Giải các hệ phương trình sau bằng phương pháp thế:  

\(a)\left\{ {\matrix{
{4x + 5y = 3} \cr 
{x - 3y = 5} \cr} } \right.\)

\(b)\left\{ {\matrix{
{7x - 2y = 1} \cr 
{3x + y = 6} \cr} } \right.\)

\(c)\left\{ {\matrix{
{1,3x + 4,2y = 12} \cr 
{0,5x + 2,5y = 5,5} \cr} } \right.\)

\(d)\left\{ {\matrix{
{\sqrt 5 x - y = \sqrt 5 \left( {\sqrt 3 - 1} \right)} \cr 
{2\sqrt 3 x + 3\sqrt 5 y = 21} \cr} } \right.\)

Giải

a)

\(\eqalign{
& \left\{ {\matrix{
{4x + 5y = 3} \cr 
{x - 3y = 5} \cr} \Leftrightarrow \left\{ {\matrix{
{x = 3y + 5} \cr 
{4\left( {3y + 5} \right) + 5y = 3} \cr} } \right.} \right. \cr& \Leftrightarrow \left\{ {\matrix{
{x = 3y + 5} \cr 
{17y = - 17} \cr} \Leftrightarrow \left\{ {\matrix{
{x = 3y + 5} \cr 
{y = - 1} \cr} } \right.} \right. \cr& \Leftrightarrow \left\{ {\matrix{
{x = 2} \cr 
{y = - 1} \cr} } \right. \cr} \)

Vậy hệ phương trình có 1 nghiệm duy nhất: (x; y) = (2; -1)

b)

\(\eqalign{
& \left\{ {\matrix{
{7x - 2y = 1} \cr 
{3x + y = 6} \cr} \Leftrightarrow \left\{ {\matrix{
{y = - 3x + 6} \cr 
{7x - 2\left( { - 3x + 6} \right) = 1} \cr} } \right.} \right. \cr 
& \Leftrightarrow \left\{ {\matrix{
{y = - 3x + 6} \cr 
{13x = 13} \cr} \Leftrightarrow \left\{ {\matrix{
{x = 1} \cr 
{y = - 3x + 6} \cr} } \right.} \right. \cr 
& \Leftrightarrow \left\{ {\matrix{
{x = 1} \cr 
{y = 3} \cr} } \right. \cr} \)

Vậy hệ phương trình có 1 nghiệm duy nhất: (x; y) = (1; 3)

c)

\(\eqalign{
& \left\{ {\matrix{
{1,3x + 4,2y = 12} \cr 
{0,5x + 2,5y = 5,5} \cr} \Leftrightarrow \left\{ {\matrix{
{1,3x + 4,2y = 12} \cr 
{x + 5y = 11} \cr
} } \right.} \right. \cr 
& \Leftrightarrow \left\{ {\matrix{
{x = 11 - 5y} \cr 
{1,3\left( {11 - 5y} \right) + 4,2y = 12} \cr} } \right. \cr 
& \Leftrightarrow \left\{ {\matrix{
{x = 11 - 5y} \cr 
{ - 23y = - 23} \cr} \Leftrightarrow \left\{ {\matrix{
{x = 11 - 5y} \cr 
{y = 1} \cr} } \right.} \right. \cr 
& \Leftrightarrow \left\{ {\matrix{
{x = 6} \cr 
{y = 1} \cr} } \right. \cr} \)

Vậy hệ phương trình có 1 nghiệm duy nhất: (x; y) = (6; 1)

d) 

\(\eqalign{
& \left\{ {\matrix{
{\sqrt 5 x - y = \sqrt 5 \left( {\sqrt 3 - 1} \right)} \cr 
{2\sqrt 3 x + 3\sqrt 5 y = 21} \cr
} \Leftrightarrow \left\{ {\matrix{
{y = \sqrt 5 \left( {x + 1 - \sqrt 3 } \right)} \cr 
{2\sqrt 3 x + 15\left( {x + 1 - \sqrt 3 } \right) = 21} \cr} } \right.} \right. \cr 
& \Leftrightarrow \left\{ {\matrix{
{y = \sqrt 5 \left( {x + 1 - \sqrt 3 } \right)} \cr 
{\left( {2\sqrt 3 + 15} \right)x = 3\left( {2 + 5\sqrt 3 } \right)} \cr} \Leftrightarrow \left\{ {\matrix{
{y = \sqrt 5 \left( {x + 1 - \sqrt 3 } \right)} \cr 
{x = {{6 + 15\sqrt 3 } \over {2\sqrt 3 + 15}}} \cr} } \right.} \right. \cr 
& \Leftrightarrow \left\{ {\matrix{
{y = \sqrt 5 \left( {x + 1 - \sqrt 3 } \right)} \cr 
{x = {{\left( {6 + 15\sqrt 3 } \right)\left( {15 - 2\sqrt 3 } \right)} \over {225 - 12}}} \cr
} \Leftrightarrow \left\{ {\matrix{
{y = \sqrt 5 \left( {x + 1 - \sqrt 3 } \right)} \cr 
{x = {{90 - 12\sqrt 3 + 225\sqrt 3 - 90} \over {213}}} \cr} } \right.} \right. \cr 
& \Leftrightarrow \left\{ {\matrix{
{y = \sqrt 5 \left( {x + 1 - \sqrt 3 } \right)} \cr 
{x = {{213\sqrt 3 } \over {213}}} \cr} } \right. \Leftrightarrow \left\{ {\matrix{
{y = \sqrt 5 \left( {x + 1 - \sqrt 3 } \right)} \cr 
{x = \sqrt 3 } \cr} } \right. \cr 
& \Leftrightarrow \left\{ {\matrix{
{y = \sqrt 5 } \cr 
{x = \sqrt 3 } \cr} } \right. \cr} \)

Vậy hệ phương trình có 1 nghiệm duy nhất: (x; y) = \(\left( {\sqrt 3 ;\sqrt 5 } \right)\)

 


Câu 17 trang 9 Sách bài tập (SBT) Toán 9 tập 2

Giải các hệ phương trình:

\(a)\left\{ {\matrix{
{1,7x - 2y = 3,8} \cr 
{2,1x + 5y = 0,4} \cr} } \right.\)

\(b)\left\{ {\matrix{
{\left( {\sqrt 5 + 2} \right)x + y = 3 - \sqrt 5 } \cr 
{ - x + 2y = 6 - 2\sqrt 5 } \cr} } \right.\)

Giải

a)

\(\eqalign{
& \left\{ {\matrix{
{1,7x - 2y = 2,8} \cr 
{2,1x + 5y = 0,4} \cr} } \right. \cr 
& \Leftrightarrow \left\{ {\matrix{
{17x - 20y = 28} \cr 
{21x + 50y = 4} \cr} } \right. \cr 
& \Leftrightarrow \left\{ {\matrix{
{y = {{17x - 28} \over {20}}} \cr 
{21x + 50.{{17x - 28} \over {20}} = 4} \cr} } \right. \cr 
& \Leftrightarrow \left\{ {\matrix{
{y = {{17x - 28} \over {20}}} \cr 
{42x + 85x - 140 = 8} \cr} } \right. \cr 
& \Leftrightarrow \left\{ {\matrix{
{y = {{17x - 28} \over {20}}} \cr 
{127x = 148} \cr} } \right. \cr 
& \Leftrightarrow \left\{ {\matrix{
{y = {{17x - 28} \over {20}}} \cr 
{x = {{148} \over {127}}} \cr} } \right. \cr 
& \Leftrightarrow \left\{ {\matrix{
{y = - {{52} \over {127}}} \cr 
{x = {{148} \over {127}}} \cr} } \right. \cr} \)

Vậy hệ phương trình có 1 nghiệm duy nhất: (x; y) = \(\left( {{{148} \over {127}}; - {{52} \over {127}}} \right)\)

b)

\(\eqalign{
& \left\{ {\matrix{
{\left( {\sqrt 5 x + 2} \right)x + y = 3 - \sqrt 5 } \cr 
{ - x + 2y = 6 - 2\sqrt 5 } \cr} } \right. \cr 
& \Leftrightarrow \left\{ {\matrix{
{y = 3 - \sqrt 5 - \left( {\sqrt 5 - 2} \right)x} \cr 
{ - x + 2\left[ {3 - \sqrt 5 - \left( {\sqrt 5 - 2} \right)x} \right] = 6 - 2\sqrt 5 } \cr} } \right. \cr 
& \Leftrightarrow \left\{ {\matrix{
{y = 3 - \sqrt 5 - \left( {\sqrt 5 + 2} \right)x} \cr 
{ - x + 6 - 2\sqrt 5 - \left( {2\sqrt 5 + 4} \right)x = 6 - 2\sqrt 5 } \cr} } \right. \cr 
& \Leftrightarrow \left\{ {\matrix{
{y = 3 - \sqrt 5 - \left( {\sqrt 5 + 2} \right)x} \cr 
{ - x\left( {2\sqrt 5 + 5} \right) = 0} \cr} } \right. \cr 
& \Leftrightarrow \left\{ {\matrix{
{y = 3 - \sqrt 5 - \left( {\sqrt 5 + 2} \right)x} \cr 
{x = 0} \cr} } \right. \Leftrightarrow \left\{ {\matrix{
{y = 3 - \sqrt 5 } \cr 
{x = 0} \cr} } \right. \cr} \)

Vậy hệ phương trình có 1 nghiệm duy nhất:(x; y) = \(\left( {0;3 - \sqrt 5 } \right)\).

 


Câu 18 trang 9 Sách bài tập (SBT) Toán 9 tập 2

Tìm giá trị của a và b:

a) Để hệ phương trình

\(\left\{ {\matrix{
{3ax - \left( {b + 1} \right)y = 93} \cr 
{bx + 4ay = - 3} \cr} } \right.\)

có nghiệm là (x; y) = (1; -5);

b) Để hệ phương trình

\(\left\{ {\matrix{
{\left( {a - 2} \right)x + 5by = 25} \cr 
{2ax - \left( {b - 2} \right)y = 5} \cr} } \right.\)

có nghiệm là (x; y) = (3; -1)

Giải

a) Cặp (x; y) = (1; -5) là nghiệm của hệ phương trình đã cho.

Thay x = 1; y = -5 vào hệ phương trình ta có:

\(\eqalign{
& \left\{ {\matrix{
{3a + 5b = 88} \cr 
{b - 20a = - 3} \cr} } \right. \Leftrightarrow \left\{ {\matrix{
{b = 20a - 3} \cr 
{3a + 5\left( {20a - 3} \right) = 88} \cr} } \right. \cr 
& \Leftrightarrow \left\{ {\matrix{
{b = 20a - 3} \cr 
{3a + 100a - 15 = 88} \cr} } \right. \Leftrightarrow \left\{ {\matrix{
{b = 20a - 3} \cr 
{103a = 103} \cr} } \right. \cr 
& \Leftrightarrow \left\{ {\matrix{
{b = 20a - 3} \cr 
{a = 1} \cr
} } \right. \Leftrightarrow \left\{ {\matrix{
{b = 17} \cr 
{a = 1} \cr} } \right. \cr} \)

Vậy hằng số a = 1 và hằng số b = 17.

b) Cặp (x; y) = (3; -1) là nghiệm của hệ phương trình đã cho:

Thay x = 3; y = -1 vào hệ phương trình ta có:

\(\eqalign{
& \left\{ {\matrix{
{3a - 5b = 31} \cr 
{6a + b = 7} \cr} } \right. \Leftrightarrow \left\{ {\matrix{
{b = 7 - 6a} \cr 
{3a - 5\left( {7 - 6a} \right) = 31} \cr} } \right. \cr 
& \Leftrightarrow \left\{ {\matrix{
{b = 7 - 6a} \cr 
{33a = 66} \cr} } \right. \Leftrightarrow \left\{ {\matrix{
{b = 7 - 6a} \cr 
{a = 2} \cr
} } \right. \cr 
& \Leftrightarrow \left\{ {\matrix{
{b = - 5} \cr 
{a = 2} \cr} } \right. \cr} \)

Vậy hằng số a = 2 và hằng số b = -5.

Giaibaitap.me

Góp ý - Báo lỗi

Vấn đề em gặp phải là gì ?

Hãy viết chi tiết giúp Giaibaitap.me

Bài giải mới nhất

Bài giải mới nhất các môn khác