Trang chủ
Loigiaihay.com 2025

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết
Bình chọn:
4.9 trên 7 phiếu

Giải sách bài tập Toán 9

CHƯƠNG III: HỆ HAI PHƯƠNG TRÌNH BẬC NHẤT HAI ẨN

Giải bài tập trang 11 bài 4 giải hệ phương trình bằng phương pháp cộng đại số Sách bài tập (SBT) Toán 9 tập 2. Câu 25: Giải các hệ phương trình sau bằng phương pháp cộng đại số...

Câu 25 trang 11 Sách bài tập (SBT) Toán 9 tập 2

Giải các hệ phương trình sau bằng phương pháp cộng đại số:

\(a)\left\{ {\matrix{
{2x - 11y = - 7} \cr 
{10x + 11y = 31} \cr} } \right.\)

\(b)\left\{ {\matrix{
{4x + 7y = 16} \cr 
{4x - 3y = - 24} \cr} } \right.\)

\(c)\left\{ {\matrix{
{0,35x + 4y = - 2,6} \cr 
{0,75x - 6y = 9} \cr} } \right.\)

\(d)\left\{ {\matrix{
{\sqrt 2 x + 2\sqrt 3 y = 5} \cr 
{4x - 3y = - 24} \cr} } \right.\)

\(e)\left\{ {\matrix{
{10x - 9y = 8} \cr 
{15x + 21y = 0,5} \cr} } \right.\)

\(f)\left\{ {\matrix{
{3,3x + 4,2y = 1} \cr 
{9x + 14y = 4} \cr} } \right.\)

Giải

a)

\(\eqalign{
& \left\{ {\matrix{
{2x - 11y = - 7} \cr 
{10x + 11y = 31} \cr} } \right. \cr 
& \Leftrightarrow \left\{ {\matrix{
{12x = 24} \cr 
{2x - 11y = - 7} \cr} } \right. \cr 
& \Leftrightarrow \left\{ {\matrix{
{x = 2} \cr 
{2.2 - 11y = - 7} \cr} } \right. \cr 
& \Leftrightarrow \left\{ {\matrix{
{x = 2} \cr 
{ - 11y = - 11} \cr} } \right. \cr 
& \Leftrightarrow \left\{ {\matrix{
{x = 2} \cr 
{y = 1} \cr} } \right. \cr} \)

Vậy hệ phương trình đã cho có một nghiệm (x; y) = (2; 1)

b)

\(\eqalign{
& \left\{ {\matrix{
{4x + 7y = 16} \cr 
{4x - 3y = - 24} \cr} } \right. \Leftrightarrow \left\{ {\matrix{
{10y = 40} \cr 
{4x - 3y = - 24} \cr} } \right. \cr 
& \Leftrightarrow \left\{ {\matrix{
{y = 4} \cr 
{4x - 3.4 = - 24} \cr} } \right. \Leftrightarrow \left\{ {\matrix{
{y = 4} \cr 
{4x = - 12} \cr} } \right. \cr 
& \Leftrightarrow \left\{ {\matrix{
{y = 4} \cr 
{x = - 3} \cr} } \right. \cr} \)

Vậy hệ phương trình đã cho có một nghiệm (x; y) = (-3; 4)

c)

\(\eqalign{
& \left\{ {\matrix{
{0,35x + 4y = - 2,6} \cr 
{0,75x - 6y = 9} \cr
} } \right. \Leftrightarrow \left\{ {\matrix{
{1,05x + 12y = - 7,8} \cr 
{1,5x - 12y = 18} \cr
} } \right. \cr 
& \Leftrightarrow \left\{ {\matrix{
{2,55x = 10,2} \cr 
{0,75x - 6y = 9} \cr
} } \right. \Leftrightarrow \left\{ {\matrix{
{x = 4} \cr 
{0,75.4 - 6y = 9} \cr} } \right. \cr 
& \Leftrightarrow \left\{ {\matrix{
{x = 4} \cr 
{ - 6y = 6} \cr
} } \right. \Leftrightarrow \left\{ {\matrix{
{x = 4} \cr 
{y = - 1} \cr} } \right. \cr} \)

Vậy hệ phương trình đã cho có một nghiệm (x; y) = (4; -1)

d)

\(\eqalign{
& \left\{ {\matrix{
{\sqrt 2 x + 2\sqrt 3 y = 5} \cr 
{3\sqrt 2 x - \sqrt 3 y = {9 \over 2}} \cr
} } \right. \Leftrightarrow \left\{ {\matrix{
{\sqrt 2 x + 2\sqrt 3 y = 5} \cr 
{6\sqrt 2 x - 2\sqrt 3 y = 9} \cr
} } \right. \cr 
& \Leftrightarrow \left\{ {\matrix{
{7\sqrt 2 x = 14} \cr 
{\sqrt 2 x + 2\sqrt 3 y = 5} \cr
} } \right. \Leftrightarrow \left\{ {\matrix{
{x = {{14} \over {7\sqrt 2 }}} \cr 
{\sqrt 2 x + 2\sqrt 3 y = 5} \cr} } \right. \cr 
& \Leftrightarrow \left\{ {\matrix{
{x = \sqrt 2 } \cr 
{\sqrt 2 .\sqrt 2 + 2\sqrt 3 y = 5} \cr} } \right. \Leftrightarrow \left\{ {\matrix{
{x = \sqrt 2 } \cr 
{2\sqrt 3 y = 3} \cr} } \right. \cr 
& \Leftrightarrow \left\{ {\matrix{
{x = \sqrt 2 } \cr 
{y = {{\sqrt 3 } \over 2}} \cr} } \right. \cr} \)

Vậy hệ phương trình đã cho có một nghiệm (x; y) = \(\left( {\sqrt 2 ;{{\sqrt 3 } \over 2}} \right)\)

e)

\(\eqalign{
& \left\{ {\matrix{
{10x - 9y = 8} \cr 
{15x + 21y = 0,5} \cr
} } \right. \Leftrightarrow \left\{ {\matrix{
{30x - 27y = 24} \cr 
{30x + 42y = 1} \cr
} } \right. \cr 
& \Leftrightarrow \left\{ {\matrix{
{69y = - 23} \cr 
{10x - 9y = 8} \cr} } \right. \Leftrightarrow \left\{ {\matrix{
{y = - {1 \over 3}} \cr 
{10x - 9.\left( { - {1 \over 3}} \right) = 8} \cr} } \right. \cr 
& \Leftrightarrow \left\{ {\matrix{
{y = - {1 \over 3}} \cr 
{10x = 5} \cr} } \right. \Leftrightarrow \left\{ {\matrix{
{y = - {1 \over 3}} \cr 
{x = {1 \over 2}} \cr} } \right. \cr} \)

Vậy hệ phương trình đã cho có một nghiệm (x; y) = \(\left( {{1 \over 2}; - {1 \over 3}} \right)\)

f)

\(\eqalign{
& \left\{ {\matrix{
{3,3x + 4,2y = 1} \cr 
{9x + 14y = 4} \cr
} } \right. \Leftrightarrow \left\{ {\matrix{
{33x + 42y = 10} \cr 
{27x + 42y = 12} \cr
} } \right. \cr 
& \Leftrightarrow \left\{ {\matrix{
{6x = - 2} \cr 
{9x + 14y = 4} \cr
} } \right. \Leftrightarrow \left\{ {\matrix{
{x = - {1 \over 3}} \cr 
{9.\left( { - {1 \over 3}} \right) + 14y = 4} \cr} } \right. \cr 
& \Leftrightarrow \left\{ {\matrix{
{x = - {1 \over 3}} \cr 
{14y = 7} \cr
} } \right. \Leftrightarrow \left\{ {\matrix{
{x = - {1 \over 3}} \cr 
{y = {1 \over 2}} \cr} } \right. \cr} \)

Vậy hệ phương trình đã cho có một nghiệm (x; y) = \(\left( { - {1 \over 3};{1 \over 2}} \right)\)

 


Câu 26 trang 11 Sách bài tập (SBT) Toán 9 tập 2

Giải các hệ phương trình sau:

\(a)\left\{ {\matrix{
{8x - 7y = 5} \cr 
{12x + 13y = - 8} \cr} } \right.\)

\(b)\left\{ {\matrix{
{3\sqrt 5 x - 4y = 15 - 2\sqrt 7 } \cr 
{ - 2\sqrt 5 x + 8\sqrt 7 y = 18} \cr} } \right.\)

Giải

a)

\(\eqalign{
& \left\{ {\matrix{
{8x - 7y = 5} \cr 
{12x + 13y = - 8} \cr} } \right. \Leftrightarrow \left\{ {\matrix{
{24x - 21y = 15} \cr 
{24x + 26y = - 16} \cr} } \right. \cr 
& \Leftrightarrow \left\{ {\matrix{
{47y = - 31} \cr 
{8x - 7y = 5} \cr
} } \right. \Leftrightarrow \left\{ {\matrix{
{y = - {{31} \over {47}}} \cr 
{8x - 7.\left( { - {{31} \over {47}}} \right) = 5} \cr
} } \right. \cr 
& \Leftrightarrow \left\{ {\matrix{
{y = - {{31} \over {47}}} \cr 
{8x = 5 - {{217} \over {47}}} \cr
} } \right. \Leftrightarrow \left\{ {\matrix{
{y = - {{31} \over {47}}} \cr 
{x = {9 \over {188}}} \cr} } \right. \cr} \)

Vậy hệ phương trình đã cho có một nghiệm (x; y) = \(\left( {{9 \over {188}}; - {{31} \over {47}}} \right)\)

b)

\(\eqalign{
& \left\{ {\matrix{
{3\sqrt 5 x - 4y = 15 - 2\sqrt 7 } \cr 
{ - 2\sqrt 5 x + 8\sqrt 7 y = 18} \cr
} } \right. \Leftrightarrow \left\{ {\matrix{
{6\sqrt 5 x - 8y = 30 - 4\sqrt 7 } \cr 
{ - 6\sqrt 5 x + 24\sqrt 7 y = 54} \cr
} } \right. \cr 
& \Leftrightarrow \left\{ {\matrix{
{\left( {24\sqrt 7 - 8} \right)y = 84 - 4\sqrt 7 } \cr 
{ - 2\sqrt 5 x + 8\sqrt 7 y = 18} \cr
} } \right. \Leftrightarrow \left\{ {\matrix{
{y = {{4\left( {21 - \sqrt 7 } \right)} \over {8\left( {3\sqrt 7 - 1} \right)}}} \cr 
{ - 2\sqrt 5 x + 8\sqrt 7 y = 18} \cr
} } \right. \cr 
& \Leftrightarrow \left\{ {\matrix{
{y = {{\left( {21 - \sqrt 7 } \right)\left( {3\sqrt 7 + 1} \right)} \over {2.\left( {9.7 - 1} \right)}}} \cr 
{ - 2\sqrt 5 x + 8\sqrt 7 y = 18} \cr
} } \right. \Leftrightarrow \left\{ {\matrix{
{y = {{62\sqrt 7 } \over {2.62}}} \cr 
{ - 2\sqrt 5 x + 8\sqrt 7 y = 18} \cr
} } \right. \cr 
& \Leftrightarrow \left\{ {\matrix{
{y = {{\sqrt 7 } \over 2}} \cr 
{ - 2\sqrt 5 x + 8\sqrt 7 .{{\sqrt 7 } \over 2} = 18} \cr
} } \right. \Leftrightarrow \left\{ {\matrix{
{y = {{\sqrt 7 } \over 2}} \cr 
{ - 2\sqrt 5 x = - 10} \cr} } \right. \cr 
& \Leftrightarrow \left\{ {\matrix{
{y = {{\sqrt 7 } \over 2}} \cr 
{x = {{10} \over {2\sqrt 5 }}} \cr} } \right. \Leftrightarrow \left\{ {\matrix{
{y = {{\sqrt 7 } \over 2}} \cr 
{x = \sqrt 5 } \cr} } \right. \cr} \

Vậy hệ phương trình đã cho có một nghiệm (x; y) = \left( {\sqrt 5 ;{{\sqrt 7 } \over 2}} \right)\)

Câu 27 trang 11 Sách bài tập (SBT) Toán 9 tập 2

Giải các hệ phương trình:

\(a)\left\{ {\matrix{
{5\left( {x + 2y} \right) = 3x - 1} \cr 
{2x + 4 = 3\left( {x - 5y} \right) - 12} \cr} } \right.\)

\(b)\left\{ {\matrix{
{4{x^2} - 5\left( {y + 1} \right) = {{\left( {2x - 3} \right)}^2}} \cr 
{3\left( {7x + 2} \right) = 5\left( {2y - 1} \right) - 3x} \cr} } \right.\)

\(c)\left\{ {\matrix{
{{{2x + 1} \over 4} - {{y - 2} \over 3} = {1 \over {12}}} \cr 
{{{x + 5} \over 2} = {{y + 7} \over 3} - 4} \cr} } \right.\)

\(d)\left\{ {\matrix{
{{{3s - 2t} \over 5} + {{5s - 3t} \over 3} = s + 1} \cr 
{{{2s - 3t} \over 3} + {{4s - 3t} \over 2} = t + 1} \cr} } \right.\)

Giải

a)

\(\eqalign{
& \left\{ {\matrix{
{5\left( {x + 2y} \right) = 3x - 1} \cr 
{2x + 4 = 3\left( {x - 5y} \right) - 12} \cr
} } \right. \cr 
& \Leftrightarrow \left\{ {\matrix{
{5x + 10y = 3x - 1} \cr 
{2x + 4 = 3x - 15y - 12} \cr
} } \right. \cr 
& \Leftrightarrow \left\{ {\matrix{
{2x + 10y = - 1} \cr 
{x - 15y = 16} \cr
} } \right. \Leftrightarrow \left\{ {\matrix{
{2x + 10y = - 1} \cr 
{2x - 30y = 32} \cr} } \right. \cr 
& \Leftrightarrow \left\{ {\matrix{
{40y = - 33} \cr 
{x - 15y = 16} \cr
} } \right. \cr 
& \Leftrightarrow \left\{ {\matrix{
{y = - {{33} \over {40}}} \cr 
{x - 15.\left( { - {{33} \over {40}}} \right) = 16} \cr
} } \right. \cr 
& \Leftrightarrow \left\{ {\matrix{
{y = - {{33} \over {40}}} \cr 
{x = 16 - {{99} \over 8}} \cr
} } \right. \Leftrightarrow \left\{ {\matrix{
{y = - {{33} \over {40}}} \cr 
{x = {{29} \over 8}} \cr} } \right. \cr} \)

Vậy hệ phương trình đã cho có một nghiệm (x; y) = \(\left( {{{29} \over 8}; - {{33} \over {40}}} \right)\)

b)

\(\eqalign{
& \left\{ {\matrix{
{4{x^2} - 5\left( {y + 1} \right) = {{\left( {2x - 3} \right)}^2}} \cr 
{3\left( {7x + 2} \right) = 5\left( {2y - 1} \right) - 3x} \cr
} } \right. \cr 
& \Leftrightarrow \left\{ {\matrix{
{4{x^2} - 5y - 5 = 4{x^2} - 12x + 9} \cr 
{21x + 6 = 10y - 5 - 3x} \cr
} } \right. \cr 
& \Leftrightarrow \left\{ {\matrix{
{12x - 5y = 14} \cr 
{24x - 10y = - 11} \cr
} } \right. \cr 
& \Leftrightarrow \left\{ {\matrix{
{24x - 10y = 28} \cr 
{24x - 10y = - 11} \cr} } \right. \cr 
& \Leftrightarrow \left\{ {\matrix{
{0x + 0y = 39} \cr 
{24x - 10y = - 11} \cr} } \right. \cr} \)

Phương trình: 0x + 0y = 39 vô nghiệm.

Vậy hệ phương trình đã cho vô nghiệm.

c)

\(\eqalign{
& \left\{ {\matrix{
{{{2x + 1} \over 4} - {{y - 2} \over 3} = {1 \over {12}}} \cr 
{{{x + 5} \over 2} = {{y + 7} \over 3} - 4} \cr
} } \right. \cr 
& \Leftrightarrow \left\{ {\matrix{
{3\left( {2x + 1} \right) - 4\left( {y - 2} \right) = 1} \cr 
{3\left( {x + 5} \right) = 2\left( {y + 7} \right) - 24} \cr
} } \right. \cr 
& \Leftrightarrow \left\{ {\matrix{
{6x + 3 - 4y + 8 = 1} \cr 
{3x + 15 = 2y + 14 - 24} \cr
} } \right. \cr 
& \Leftrightarrow \left\{ {\matrix{
{6x - 4y = - 10} \cr 
{3x - 2y = - 25} \cr
} } \right. \cr 
& \Leftrightarrow \left\{ {\matrix{
{3x - 2y = - 5} \cr 
{3x - 2y = - 25} \cr} } \right. \Leftrightarrow \left\{ {\matrix{
{0x + 0y = 20} \cr 
{3x - 2y = 25} \cr} } \right. \cr} \)

Phương trình 0x + 0y = 20 vô nghiệm

Vậy hệ phương trình đã cho vô nghiệm

d)

\(\eqalign{
& \left\{ {\matrix{
{{{3s - 3t} \over 5} + {{5s - 3t} \over 3} = s + 1} \cr 
{{{2s - 3t} \over 3} + {{4s - 3t} \over 2} = t + 1} \cr} } \right. \cr 
& \Leftrightarrow \left\{ {\matrix{
{3\left( {3s - 2t} \right) + 5\left( {5s - 3t} \right) = 15s + 15} \cr 
{2\left( {2s - 3t} \right) + 3\left( {4s - 3t} \right) = 6t + 6} \cr
} } \right. \cr 
& \Leftrightarrow \left\{ {\matrix{
{9s - 6t + 25s - 15t = 15s + 15} \cr 
{4s - 6t + 12s - 9t = 6t + 6} \cr
} } \right. \cr 
& \Leftrightarrow \left\{ {\matrix{
{19s - 21t = 15} \cr 
{16s - 21t = 6} \cr
} } \right. \cr 
& \Leftrightarrow \left\{ {\matrix{
{3s = 9} \cr 
{16s - 21t = 6} \cr
} } \right. \cr 
& \Leftrightarrow \left\{ {\matrix{
{s = 3} \cr 
{16.3 - 21t = 6} \cr
} } \right. \cr 
& \Leftrightarrow \left\{ {\matrix{
{s = 3} \cr 
{21t = 48 - 6} \cr
} } \right. \Leftrightarrow \left\{ {\matrix{
{s = 3} \cr 
{t = 2} \cr} } \right. \cr} \)

Vậy hệ phương trình đã cho có một nghiệm (s; t) = (3; 2).

 


Câu 28 trang 11 Sách bài tập (SBT) Toán 9 tập 2

Tìm hai số a và b sao cho 5a – 4b = -5 và đường thẳng ax + by = -1 đi qua điểm A (-7; 4).

Giải

Đường thẳng ax + by = -1 đi qua điểm A (-7; 4) nên tọa độ của A nghiệm đúng phương trình đường thẳng nên -7a + 4b = -1.

Theo bài ra ta có phương trình:

\(\eqalign{
& \left\{ {\matrix{
{ - 7a + 4b = - 1} \cr 
{5a - 4b = - 5} \cr
} } \right. \Leftrightarrow \left\{ {\matrix{
{ - 2a = - 6} \cr 
{5a - 4b = - 5} \cr
} } \right. \cr 
& \Leftrightarrow \left\{ {\matrix{
{a = 3} \cr 
{5.3 - 4b = - 5} \cr} } \right. \Leftrightarrow \left\{ {\matrix{
{a = 3} \cr 
{ - 4b = - 20} \cr} } \right. \cr 
& \Leftrightarrow \left\{ {\matrix{
{a = 3} \cr 
{b = 5} \cr} } \right. \cr} \)

Vậy hai ẩn a và b tìm được (a; b) = (3; 5).

Giaibaitap.me

Góp ý - Báo lỗi

Vấn đề em gặp phải là gì ?

Hãy viết chi tiết giúp Giaibaitap.me

Bài giải mới nhất

Bài giải mới nhất các môn khác