Câu 9 trang 161 SGK Đại số 10
Tính
a) \(4(cos{24^0} + \cos {48^0} - \cos {84^0} - \cos {12^0})\)
b) \(96\sqrt 3 \sin {\pi \over {48}}\cos {\pi \over {48}}\cos {\pi \over {24}}\cos {\pi \over {12}}\cos {\pi \over 6}\)
c) \(\tan {9^0} - \tan {63^0} + \tan {81^0} - \tan {27^0}\)
Trả lời:
a)
\(\eqalign{
& cos{24^0} + \cos {48^0} = \cos ({36^0} - {12^0}) + \cos ({36^0} + {12^0}) \cr
& = 2\cos {36^0}\cos {12^0} \cr
& \cos {84^0} + \cos {12^0} = 2\cos {36^0}\cos {48^0} \cr
& 4(\cos {24^0} + \cos {48^0} - \cos {84^0} - \cos {12^0}) = 8\cos {36^0}(\cos {12^0} - \cos {48^0}) \cr
& = 8\cos {36^0}.2\sin {30^0}.\sin {18^0} = 8\cos {36^0}\sin {18^0} \cr
& = 8\cos {36^0}.\sqrt {{{1 - \cos {{36}^0}} \over 2}} \cr} \)
Đặt \(36^0= x\) ta có:
\(\eqalign{
& sin3x{\rm{ }} = {\rm{ }}sin{\rm{ }}\left( {{{180}^0} - 3x} \right) = sin2x \cr
& \Leftrightarrow 3\sin x - 4{\sin ^3}x = 2\sin x\cos x \cr
& \Leftrightarrow 3 - 4(1 - {\cos ^2}x) = 2{\mathop{\rm cosx}\nolimits} \cr
& \Leftrightarrow 4co{s^2}x - 2\cos x - 1 = 0 \cr
& \Rightarrow {\mathop{\rm cosx}\nolimits} = \cos {36^0} = {{1 + \sqrt 5 } \over 4} \cr} \)
Vậy :
\(4(cos{24^0} + \cos {48^0} - \cos {84^0} - \cos {12^0}) = 2(1 + \sqrt 5 )\sqrt {{{3 - \sqrt 5 } \over 8}} = 2\)
b)
\(\eqalign{
& 96\sqrt 3 \sin {\pi \over {48}}\cos {\pi \over {48}}\cos {\pi \over {24}}\cos {\pi \over {12}}\cos {\pi \over 6} \cr
& = 48\sqrt 3 \sin {\pi \over {24}}\cos {\pi \over {24}}\cos {\pi \over {12}}\cos {\pi \over 6} \cr
& = 24\sqrt 3 \sin {\pi \over {12}}\cos {\pi \over {12}}\cos {\pi \over 6} \cr
& = 12\sqrt 3 \sin {\pi \over 6}\cos {\pi \over 6} = 6\sqrt 3 \sin {\pi \over 3} = 9 \cr} \)
c)
\(\eqalign{
& \tan {9^0} - \tan {63^0} + \tan {81^0} - \tan {27^0} \cr
& = {{\cos {{81}^0}} \over {\sin {{81}^0}}} + {{\sin {{81}^0}} \over {\cos {{81}^0}}} - ({{\cos {{27}^0}} \over {\sin {{27}^0}}} + {{\sin {{27}^0}} \over {\cos {{27}^0}}}) \cr
& = {1 \over {\sin {{81}^0}.cos{{81}^0}}} - {1 \over {\sin {{27}^0}.cos{{27}^0}}} \cr
& = {2 \over {\sin {{18}^0}}} - {2 \over {\sin {{54}^0}}} = {2 \over {\cos {{72}^0}}} - {2 \over {\cos {{36}^0}}} \cr
& = {2 \over {2{{\cos }^2}{{36}^0} - 1}} - {2 \over {\cos {{36}^0}}} \cr} \)
Thay \(\cos {36^0} = {{1 + \sqrt 5 } \over 4}\) ta được: \(\tan {9^0} - \tan {63^0} + \tan {81^0} - \tan {27^0} = 4\)
Câu 10 trang 161 SGK Đại số 10
Rút gọn
a) \(\cos {x \over 5}\cos {{2x} \over 5}\cos {{4x} \over 5}\cos {{8x} \over 5}\)
b) \(\sin {x \over 7} + 2\sin {{3x} \over 7} + \sin {{5x} \over 7}\)
Trả lời:
a) Nhân biểu thức với \(\sin {x \over 5}\),ta có:
\(\eqalign{
& A\sin {x \over 5} = \sin {x \over 5}\cos {x \over 5}\cos {{2x} \over 5}\cos {{4x} \over 5}\cos {{8x} \over 5} \cr
& = {1 \over 2}\sin {{2x} \over 5}\cos {{2x} \over 5}\cos {{4x} \over 5}\cos {{8x} \over 5} \cr
& = {1 \over 4}\sin {{4x} \over 5}\cos {{4x} \over 5}\cos {{8x} \over 5} = {1 \over 8}\sin {{8x} \over 5}\cos {{8x} \over 5} \cr
& = {1 \over {16}}\sin {{16x} \over 5} \cr} \)
Suy ra biểu thức rút gọn \(A =\sin{{16x} \over 5}:16\sin {x \over 5}\)
b)
\(\eqalign{
& B = \sin {x \over 7} + 2\sin {{3x} \over 7} + \sin {{5x} \over 7} = 2\sin {{3x} \over 7} + (\sin {x \over 7} + \sin {{5x} \over 7}) \cr
& = 2\sin {{3x} \over 7} + 2\sin {1 \over 2}({{5x} \over 7} + {x \over 7})cos{1 \over 2}({{5x} \over 7} - {x \over 7}) \cr
& = 2\sin {{3x} \over 7}(1 + \cos {{2x} \over 7}) = 4\sin {{3x} \over 7}{\cos ^2}{x \over 7} \cr} \)
Câu 11 trang 161 SGK Đại số 10
Chứng minh rằng trong một tam giác \(ABC\) ta có:
a) \(\tan A + \tan B + \tan C = \tan A\tan B\tan C\)
b) \(\sin 2A + \sin 2B + \sin 2C = 4\sin A\sin B\sin C\)
Trả lời:
a) Ta có:
\(\eqalign{
& A + B{\rm{ }}C = \pi \Rightarrow A = \pi - (B + C) \cr
& \tan A = \tan \left[ {\pi - (B + C)} \right] = - \tan (B + C) \cr
& = {{\tan B + \tan C} \over {\tan B\tan C - 1}} \cr
& \Rightarrow \tan A(\tan B\tan C - 1) = \tan B + \tan C \cr} \)
⇒đpcm
b)
\(VT= 2\sin(A + B) \cos(A - B)+ 2 \sin C \cos C \)
\(= 2\sin C [\cos (A - B) + \cos C]\)
\(=2\sin C [\cos(A - B) - \cos (A + B)]\)
\(= 4\sin C\sin A \sin B\) (Đpcm)
Câu 12 trang 161 Đại số 10
Không sử dụng máy tính, hãy tính:
\({{\sin {{40}^0} - \sin {{45}^0} + \sin {{50}^0}} \over {\cos {{40}^0} - \cos {{45}^0} + \cos {{50}^0}}} - {{6(\sqrt 3 + \tan {{15}^0})} \over {3 - \sqrt 3 \tan {{15}^0}}}\)
Trả lời:
Chú ý rằng: \(sin{45^0} = {\rm{ }}cos{45^0},{\rm{ }}sin{40^0} = {\rm{ }}cos{50^0},{\rm{ }}sin{50^0} = {\rm{ }}cos{40^0}\)
Ta được:
\(\eqalign{
& {{\cos {{50}^0} - \cos {{45}^0} + \cos {{50}^0}} \over {\cos {{40}^0} - \cos {{45}^0} + \cos {{50}^0}}} - {{6.3({{\sqrt 3 } \over 3} + \tan {{15}^0})} \over {3(1 - {{\sqrt 3 } \over 3}\tan {{15}^0})}} \cr
& = 1 - 6({{\tan {{30}^0} + \tan {{15}^0}} \over {1 - \tan {{30}^0}.\tan {{15}^0}}}) \cr
& = 1 - 6\tan {45^0} = - 5 \cr} \)
Giaibaitap.me
Giải bài tập trang 7 bài 1 các định nghĩa Sách giáo khoa (SGK) Hình học 10. Câu 1: Cho ba vectơ...
Giải bài tập trang 12 bài 2 Tổng và hiệu của hai vectơ Sách giáo khoa (SGK) Hình học 10. Câu 1: Cho đoạn thẳng...
Giải bài tập trang 12 bài 2 Tổng và hiệu của hai vectơ Sách giáo khoa (SGK) Hình học 10. Câu 5: Cho tam giác...
Giải bài tập trang 12 bài 2 Tổng và hiệu của hai vectơ Sách giáo khoa (SGK) Hình học 10. Câu 8:So sánh độ dài, phương và hướng của hai vectơ ...