Bài 46 trang 215 SGK Đại số 10 Nâng cao
Chứng minh rằng:
a) \(sin3α = 3sinα – 4si{n^3}\alpha \) ; \( cos3α =4co{s^3}\alpha – 3cosα\)
b)
\(\eqalign{
& \sin \alpha \sin ({\pi \over 3} - \alpha )\sin ({\pi \over 3} + \alpha ) = {1 \over 4}\sin 3\alpha \cr
& \cos \alpha \cos ({\pi \over 3} - \alpha )cos({\pi \over 3} + \alpha ) = {1 \over 4}\cos 3\alpha \cr} \)
Ứng dụng: Tính: sin 200 sin 400 sin 800 và tan 200 tan 400 tan 800
Đáp án
a) Ta có:
\(sin3α = sin (2α + α) = sin 2α cosα + sinα cos 2α\)
\( = {\rm{ }}2{\rm{ }}sin\alpha {\rm{ }}co{s^2}\alpha {\rm{ }} + {\rm{ }}sin\alpha {\rm{ }}(1{\rm{ }}-{\rm{ }}2si{n^2}\alpha )\)
\(= {\rm{ }}2sin\alpha {\rm{ }}(1{\rm{ }}-{\rm{ }}si{n^2}\alpha ){\rm{ }} + {\rm{ }}sin(1{\rm{ }}-{\rm{ }}si{n^2}\alpha ){\rm{ }}\)
\(= {\rm{ }}3sin\alpha {\rm{ }}-{\rm{ }}4si{n^3}\alpha \)
\(cos3α = cos (2α + α) = cos 2α cosα - sin2α sinα\)
\(= {\rm{ }}(2co{s^2}\alpha {\rm{ }}-{\rm{ }}1)cos\alpha {\rm{ }}-{\rm{ }}2si{n^2}\alpha {\rm{ }}cos\alpha \)
\( = {\rm{ }}2co{s^3}\alpha {\rm{ }}-{\rm{ }}cos\alpha {\rm{ }}-{\rm{ }}2cos\alpha {\rm{ }}(1{\rm{ }}-{\rm{ }}co{s^2}\alpha ){\rm{ }} \)
\(= {\rm{ }}4co{s^3}\alpha {\rm{ }}-{\rm{ }}3cos\alpha \)
b) Ta có:
\(\eqalign{
& \sin \alpha \sin ({\pi \over 3} - \alpha )\sin ({\pi \over 3} + \alpha ) \cr&= sin\alpha .{1 \over 2}(cos2\alpha - \cos {{2\pi } \over 3}) \cr
& = {1 \over 2}\sin \alpha (1 - 2{\sin ^2}\alpha + {1 \over 2}) = {1 \over 4}\sin \alpha (3 - 4{\sin ^2}\alpha ) \cr
& = {1 \over 4}\sin 3\alpha \cr
& \cos \alpha \cos ({\pi \over 3} - \alpha )cos({\pi \over 3} + \alpha ) \cr&= \cos \alpha .{1 \over 2}(cos\alpha + \cos {{2\pi } \over 3}) \cr
& = {1 \over 2}\cos \alpha (2{\cos ^2}\alpha - 1 - {1 \over 2}) \cr&= {1 \over 4}\cos \alpha (4{\cos ^2}\alpha - 3) = {1 \over 4}\cos 3\alpha \cr} \)
Ứng dụng:
\(\eqalign{
& \sin {20^0}\sin {40^0}\sin {80^0} \cr&= \sin {20^0}\sin ({60^0} - {20^0})\sin ({60^0} + {20^0}) \cr
& = {1 \over 4}\sin ({3.20^0}) = {1 \over 4}\sin {60^0} = {{\sqrt 3 } \over 8} \cr
& \cos {20^0}\cos {40^0}\cos {80^0} = {1 \over 4}\cos ({3.20^0}) = {1 \over 8} \cr} \)
Vậy : \(\tan {20^0}\tan {40^0}\tan {80^0} = \sqrt 3 \)
Bài 47 trang 215 SGK Đại số 10 Nâng cao
Chứng minh rồi dùng máy tính bỏ túi hoặc bảng số để kiểm nghiệm lại gần đúng kết quả.
a) \(\cos {10^0}\cos {50^0}\cos {70^0} = \sin {20^0}\sin {40^0}\sin {80^0} = {{\sqrt 3 } \over 8}\)
b) \(\sin {10^0}\sin {50^0}\sin {70^0} = \cos {20^0}\cos {40^0}\cos {80^0} = {1 \over 8}\)
Đáp án
a) Ta có:
\(\eqalign{
& \cos {10^0}\cos {50^0}\cos {70^0}\cr& = \cos {10^0}{\rm{[}}{1 \over 2}(cos{120^0} + \cos {20^0}){\rm{]}} \cr
& = - {1 \over 4}\cos {10^0} + {1 \over 2}\cos {10^0}\cos {20^0} \cr
& = - {1 \over 4}\cos {10^0} + {1 \over 4}(cos{30^0} + \cos {10^0})\cr& = {1 \over 4}\cos {30^0} = {{\sqrt 3 } \over 8} \cr
& \sin {20^0}\sin {40^0}\sin {80^0} = \cos {70^0}\cos {50^0}\cos {10^0} \cr&= {{\sqrt 3 } \over 8} \cr} \)
b) Ta có:
\(\eqalign{
& \sin {10^0}\sin {50^0}\sin {70^0}\cr& = {1 \over 2}(cos{20^0} - \cos {120^0})\sin {10^0} \cr
& = {1 \over 4}\sin {10^0} + {1 \over 2}\sin {10^0}\cos {20^0} \cr
& = {1 \over 4}\sin {10^0} + {1 \over 4}(\sin {30^0} - \sin {10^0}) \cr&= {1 \over 4}\sin {30^0} = {1 \over 8} \cr
& \cos {20^0}\cos {40^0}\cos {80^0} = \sin {10^0}\sin {50^0}\sin {70^0} = {1 \over 8} \cr} \)
Bài 48 trang 215 SGK Đại số 10 Nâng cao
Chứng minh rằng: \(\cos {{2\pi } \over 7} + \cos {{4\pi } \over 7} + \cos {{6\pi } \over 7} = - {1 \over 2}\)
Hướng dẫn: Nhân vế trái với \({\pi \over 7}\) (hoặc \({{2\pi } \over 7}\) ) rồi sử dụng công thức biến đổi tích thành tổng.
Đáp án
Đặt \(A = \cos {{2\pi } \over 7} + \cos {{4\pi } \over 7} + \cos {{6\pi } \over 7}\) , ta có:
\(\eqalign{
& 2A\sin {\pi \over 7} = 2\cos {{2\pi } \over 7}\sin {\pi \over 7} + 2\cos {{4\pi } \over 7}\sin {\pi \over 7}\cr& + 2\cos {{6\pi } \over 7}\sin {\pi \over 7} \cr
& = (\sin {{3\pi } \over 7} - \sin {\pi \over 7}) + (\sin {{5\pi } \over 7} - \sin {{3\pi } \over 7})\cr&+ (\sin {{7\pi } \over 7} - \sin {{5\pi } \over 7}) = - sin{\pi \over 7} \cr
& \Rightarrow A = - {1 \over 2} \cr} \)
Giaibaitap.me
Giải bài tập trang 215, 216 bài 4 một số công thức lượng giác SGK Đại số 10 Nâng cao. Câu 49: Chứng minh rằng giá trị của mỗi biểu thức sau không phụ thuộc vào x...
Giải bài tập trang 216 bài 4 một số công thức lượng giác SGK Đại số 10 Nâng cao. Câu 52: Chứng minh rằng nếu ∝ và β khác ...
Giải bài tập trang 216, 218 bài ôn tập chương 6 góc lượng giác và công thức lượng giác SGK Đại số 10 Nâng cao. Câu 55: Hỏi các đẳng thức sau có đúng với mọi số nguyên k không?...
Giải bài tập trang 218, 219 bài ôn tập chương 6 góc lượng giác và công thức lượng giác SGK Đại số 10 Nâng cao. Câu 59: Chứng minh rằng với mọi α,β,γ ta có...