Trang chủ
Loigiaihay.com 2025

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết
Bình chọn:
4.9 trên 7 phiếu

Giải bài tập Toán 10 Nâng cao

ÔN TẬP CUỐI NĂM HÌNH HỌC

Giải bài tập trang 126, 127 bài ôn tập cuối năm SGK Hình học 10 nâng cao. Câu 1: Trên hình 105, ta có tam giác ABC và các hình vuông....

Bài 1 trang 126 SGK Hình học 10 nâng cao

Trên hình 105, ta có tam giác ABC và các hình vuông \(A{A'}{B_1}B,\,\,B{B'}{C_1}C,\,\,C{C'}{A_1}A\) .

Chứng  minh các đăng thức sau

a) \((\overrightarrow {A{A'}}  + \overrightarrow {B{B'}} ).\,\overrightarrow {AC}  = 0\)

b) \((\overrightarrow {A{A'}}  + \overrightarrow {B{B'}}  + \overrightarrow {C{C'}} ).\,\overrightarrow {AC}  = 0\)

c) \(\overrightarrow {A{A'}}  + \overrightarrow {B{B'}}  + \overrightarrow {C{C'}}  = 0\)

d) \(\overrightarrow {A{B_1}}  + \overrightarrow {B{C_1}}  + \overrightarrow {C{A_1}}  = 0\)

Giải

 

a) Kẻ \(AH \bot BC\) ta chứng minh đường thẳng AH cắt A’A1 tại trung điểm I của A’A1. Kẻ .

Ta có: \({A'}M \bot AH\,,\,\,{A_1}N \bot AH\)

\(\eqalign{
& \Delta AHB = \Delta {A'}MA\,\,\, \Rightarrow \,\,{A'}M = AH \cr
& \Delta AHC = \Delta {A_1}NA\,\,\, \Rightarrow \,\,{A_1}N = AH \cr} \)                             

Từ đó suy ra: \(\Delta IM{A'} = \Delta IN{A_1}\,\,\, \Rightarrow \,\,I{A'} = \,\,I{A_1}\,\)

Tương tự gọi J là trung điểm \({B_1}{B'}\) thì \(BJ \bot AC\) .

Ta có           

\(\overrightarrow {A{A'}}  + \overrightarrow {B{B'}}  = \overrightarrow {B{B_1}}  + \overrightarrow {B{B'}}  = 2\overrightarrow {BJ} \)

\(\Rightarrow \,\,(\overrightarrow {A{A'}}  + \overrightarrow {B{B'}} ).\,\overrightarrow {AC}  = 0\)               

b) Theo câu a) và \(\overrightarrow {C{C'}}  \bot \overrightarrow {AC} \) nên \((\overrightarrow {A{A'}}  + \overrightarrow {B{B'}}  + \overrightarrow {C{C'}} ).\,\overrightarrow {AC}  = 0\) .

c) Đặt \(\overrightarrow u  = \overrightarrow {A{A'}}  + \overrightarrow {B{B'}}  + \overrightarrow {C{C'}} \).

Ta có \(\overrightarrow u .\,\overrightarrow {AC}  = 0\,,\,\overrightarrow u .\,\overrightarrow {AB}  = 0\,\)  . Suy ra \(\overrightarrow u  = \overrightarrow 0 \) .

d) Ta có

\(\eqalign{
& \overrightarrow {A{B_1}} + \overrightarrow {B{C_1}} + \overrightarrow {C{A_1}}\cr& = \overrightarrow {A{A'}} + \overrightarrow {AB} + \overrightarrow {B{B'}} + \overrightarrow {BC} + \overrightarrow {C{C'}} + \overrightarrow {CA} \cr
&  = \overrightarrow {A{A'}} + \overrightarrow {B{B'}} + \overrightarrow {C{C'}} + \overrightarrow {AB} + \overrightarrow {BC} + \overrightarrow {CA} = \overrightarrow 0 \cr} \)

            


Bài 2 trang 126 SGK Hình học 10 nâng cao

Cho tam giác  vuông tại A, AB = c, AC = b . Gọi M là điểm trên cạnh BC sao cho CM = 2BM, N là điểm trên cạnh AB sao cho BN = 2AN (h.106).

a) Biểu thị các vectơ  theo hai vectơ \(\overrightarrow {AM} ,\,\overrightarrow {CN} \) và \(\overrightarrow {AB} ;\,\overrightarrow {AC} \) .

b) Tìm hệ thức liên hệ giữa b và c sao cho \(AM \bot CN\) .

Giải

 

a) Ta có:

\(\overrightarrow {CM}  = 2\overrightarrow {MB} \,\,\, \Rightarrow \,\,\overrightarrow {AM}  - \overrightarrow {AC}  = 2(\overrightarrow {AB}  - \overrightarrow {AM} )\)

\(\Rightarrow \,\,\overrightarrow {AM}  = {2 \over 3}\overrightarrow {AB}  + {1 \over 3}\overrightarrow {AC} \)

Mặt khác \(\overrightarrow {BN}  = 2\overrightarrow {NA} \,\, \Rightarrow \,\,\overrightarrow {AN}  - \overrightarrow {AB}  =  - 2\overrightarrow {AN} \)

\(\Rightarrow \,\,\overrightarrow {AN}  = {1 \over 3}\overrightarrow {AB} \)

\( \Rightarrow \,\,\overrightarrow {CN}  = \overrightarrow {AN}  - \overrightarrow {AC}  = {1 \over 3}\overrightarrow {AB}  - \overrightarrow {AC} \)              

b) Ta có 

\(\eqalign{
& \overrightarrow {AM} \bot \overrightarrow {CN} \Leftrightarrow \,\,\overrightarrow {AM} .\overrightarrow {CN} = 0\cr& \Leftrightarrow \,\,\left( {{2 \over 3}\overrightarrow {AB} + {1 \over 3}\overrightarrow {AC} } \right)\left( {{1 \over 3}\overrightarrow {AB} - \overrightarrow {AC} } \right) \cr&\;\;\;\;\;= 0 \cr
&  \Leftrightarrow \,\,{2 \over 9}A{B^2} - {2 \over 3}\overrightarrow {AB} .\overrightarrow {AC} + {1 \over 9}\overrightarrow {AC} .\,\overrightarrow {AB} - {1 \over 3}A{C^2}\cr&\;\;\;\;\; = 0 \cr
&  \Leftrightarrow \,\,{2 \over 9}{c^2} - {1 \over 3}{b^2} = 0 \cr
& \ \Leftrightarrow \,\,2{c^2} = 3{b^2} \cr} \)

 


Bài 3 trang 127 SGK Hình học 10 nâng cao

Cho tam giác ABC với AB = 4; AC = 5, BC = 6 .

a) Tính các góc A, B, C.

b) Tính độ dài các đường trung tuyến và diện tích tam giác.

c) Tính các bán kính đường tròn nội tiếp và ngoại tiếp tam giác .

Giải

a) Ta có  \(a = 6, b = 5, c = 4\)

\(\eqalign{
& \cos A = {{{b^2} + {c^2} - {a^2}} \over {2bc}} = {{{5^2} + {4^2} - {6^2}} \over {2.5.4}} = {1 \over 8}\cr& \Rightarrow \widehat A \approx {83^0} \cr
& \cos B = {{{a^2} + {c^2} - {b^2}} \over {2ac}} = {{{6^2} + {4^2} - {5^2}} \over {2.6.4}} = {9 \over {16}}\cr& \Rightarrow \widehat B \approx {56^0} \cr
& \Rightarrow \,\,\widehat C \approx {41^0} \cr} \) 

b) Ta có

\(\eqalign{
& m_a^2 = {1 \over 4}\left( {2{b^2} + 2{c^2} - {a^2}} \right) \cr&\;\;\;\;\;\;= {1 \over 4}\left( {50 + 32 - 36} \right) = {{46} \over 4}\,\, \Rightarrow \,\,{m_a} = {{\sqrt {46} } \over 2} \cr
& m_b^2 = {1 \over 4}\left( {2{a^2} + 2{c^2} - {b^2}} \right) = {{79} \over 4}\,\, \Rightarrow \,\,{m_b} = {{\sqrt {79} } \over 2} \cr
& \Rightarrow \,\,{m_c} = {{\sqrt {106} } \over 2} \cr} \)

Giaibaitap.me

Góp ý - Báo lỗi

Vấn đề em gặp phải là gì ?

Hãy viết chi tiết giúp Giaibaitap.me

Bài giải mới nhất

Bài giải mới nhất các môn khác