Trang chủ
Loigiaihay.com 2025

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết
Bình chọn:
3.2 trên 5 phiếu

Giải bài tập Toán 10 Nâng cao

CHƯƠNG II. HÀM SỐ BẬC NHẤT VÀ BẬC HAI

Giải bài tập trang 63, 64 bài ôn tập chương 2 hàm số bậc nhất và bậc hai SGK Đại số 10 nâng cao. Câu 43: Xác định các hệ số a, b và c để cho hàm số...

Bài 43 trang 63 SGK Đại số 10 nâng cao

Xác định các hệ số a, b và c để cho hàm số \(y = ax^2 + bx + c\) đạt giá trị nhỏ nhất bằng \({3 \over 4}\) khi  \(x = {1 \over 2}\) và nhận giá trị bằng 1 khi x = 1. Lập bảng biến thiên và vẽ đồ thị của hàm số.

Đáp án

Đặc \(f(x) = ax^2 + bx + c\).

Ta có:

\(\left\{ \matrix{
{x_1} = - {b \over {2a}} \hfill \cr
f({1 \over 2}) = {1 \over 4}a + {1 \over 2}b + c \hfill \cr
f(1) = a + b + c \hfill \cr} \right.\)

Tìm a, b, c thỏa hệ:

\(\left\{ \matrix{
- {b \over {2a}} = {1 \over 2} \hfill \cr
{1 \over 4}a + {1 \over 2}b + c = {3 \over 4} \hfill \cr
a + b + c = 1 \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{
a + b = 0 \hfill \cr
a + 2b + 4 = 3 \hfill \cr
a + b + c = 1 \hfill \cr} \right. \)

\(\Leftrightarrow \left\{ \matrix{
a = 1 \hfill \cr
b = - 1 \hfill \cr
c = 1 \hfill \cr} \right.\) 

Vậy \(y = x^2 – x + 1\)

Bảng biến thiên:

 

Đồ thị hàm số:

 

 


Bài 44 trang 64 SGK Đại số 10 nâng cao

Vẽ đồ thị của các hàm số sau rồi lập bảng biến thiên của nó

a) \(y = |{3 \over 2}x - 2|\)

b) 

\(y = \left\{ \matrix{
2x\,\,\,\,\,\,\,\,\,\,\,\,\,\,;x < 0 \hfill \cr
{x^2} - x\,\,\,\,\,\,\,;x \ge 0 \hfill \cr} \right.\)

c) \(y = |{1 \over 2}{x^2} + x - {3 \over 2}|\)

d) \(y = x|x| - 2x – 1\)

Đáp án

a) Ta có:

\(y = \left\{ \matrix{
{3 \over 2}x - 2\,\,\,\,;x \ge {3 \over 4} \hfill \cr
- {3 \over 2} + 2\,\,\,\,;x < {3 \over 4} \hfill \cr} \right.\) 

Đồ thị hàm số:

 

Bảng biến thiên:

b)

Đồ thị hàm số:

 

Bảng biến thiên:

c) Ta có:

\(y = \left\{ \matrix{
{1 \over 2}{x^2} + x - {3 \over 2}\,\,\,\,\,\,\,\,\,;\,x \le - 3,x \ge - 1 \hfill \cr
- {1 \over 2}{x^2} - x + {3 \over 2}\,\,\,\,\,\,; - 3 < x < 1 \hfill \cr} \right.\) 

Đồ thị hàm số:

 

Bảng biến thiên:

 

d) Ta có:

\(y = \left\{ \matrix{
{x^2} - 2x - 1\,\,\,\,\,;x \ge 0 \hfill \cr
- {(x + 1)^2}\,\,\,\,\,\,\,\,\,;x < 0 \hfill \cr} \right.\)

Đồ thị hàm số:

 

Bảng biến thiên:

 

 


Bài 45 trang 64 SGK Đại số 10 nâng cao

Trên hình bên, điểm M chuyển động trên đoạn thẳng AX. Từ M, kẻ đường thẳng song song với AB, cắt một trong ba đoạn thẳng BC, DE, FG tại điểm N. Gọi s là diện tích của miền tô đậm nằm ở bên trái MN. Gọi độ dài đoạn AM là x (0 < x < 9). Khi đó s là một hàm số của biến X. Hãy nêu biểu thức xác định hàm số S(x).

Đáp án

Với x ≤ x < 2  thì S(x) = AM.AB = 3x

Với 2 ≤ x < 6 thì S(x) = AB.BC + MN.DN = 6 + 5(x – 2) = 5x – 4

Với 6 ≤ x ≤ 9 thì S(x) =  6 + 20 +7(x – 6) = 7x – 16

Vậy 

\(S(x) = \left\{ \matrix{
3x\,\,\,\,\,\,\,\,\,\,\,;0 \le x 5x - 4\,\,\,\,;2 \le x < 6 \hfill \cr
7x - 16\,\,;6 \le x \le 9 \hfill \cr} \right.\)



Bài 46 trang 64 SGK Đại số 10 nâng cao

Khi một con tàu vũ trụ được phóng lên Mặt Trăng, trước hết nó sẽ bay vòng quanh Trái Đất. Sau đó, đến một thời điểm thích hợp, động cơ bắt đầu hoạt động đưa con tàu bay theo quỹ đạo là một nhánh hình parabol lên Mặt Trăng (trong hệ tọa độ Oxy như hình vẽ bên, X và y tính bằng nghìn kilômét). Biết rằng khi động cơ bắt đầu hoạt động, x= 0 thì y = -7. Sau đó y = -4 khi x = 10 và y = 5 khi x = 20.

a) Tìm hàm số có đồ thị là nhánh parabol nói trên

b) Theo lịch trình, đế đến được Mặt Trăng, con tàu phải đi qua điểm (100; V) với \(y = 294 ± 1,5\). Hỏi điều kiện đó có được thỏa màn hay không?

Đáp án

a) Gọi hàm bậc hai cần tìm là \(y = f(x) = ax^2 + bx + c\)

Theo đề bài ta có:

\(\left\{ \matrix{
f(0) = - 7 \hfill \cr
f(10) = - 4 \hfill \cr
f(20) = 5 \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{
c = - 7 \hfill \cr
100a + 10b + c = - 4 \hfill \cr
400a + 20b + c = 5 \hfill \cr} \right.\)

\(\Leftrightarrow \left\{ \matrix{
a = 0,03 \hfill \cr
b = 0 \hfill \cr
c = - 7 \hfill \cr} \right.\)

Vậy: \(y = 0,03x^2– 7\)

b) Theo điều kiện khi \(x = 100\) thì \(y = 294 ± 1,5\)

Tức \(294 – 1,5 \le y \le 294 + 1,5\)

\(⇔ y ∈ [292,5; 295,5]\)

Ta có: \(f(100) = 0,03.100^2– 7 = 293\) (thỏa mãn điều kiện)

Giaibaitap.me

 

Góp ý - Báo lỗi

Vấn đề em gặp phải là gì ?

Hãy viết chi tiết giúp Giaibaitap.me

Bài giải mới nhất

Bài giải mới nhất các môn khác