Trang chủ
Loigiaihay.com 2025

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết
Bình chọn:
4.9 trên 7 phiếu

Giải bài tập Toán 10 Nâng cao

CHƯƠNG 6. GÓC LƯỢNG GIÁC VÀ CÔNG THỨC LƯỢNG GIÁC

Giải bài tập trang 213, 214 bài 4 một số công thức lượng giác SGK Đại số 10 Nâng cao. Câu 38: Hỏi mỗi khẳng định sau đây có đúng không? ∀α,∀β ta có:...

Bài 38 trang 213 SGK Đại số 10 Nâng cao

Hỏi mỗi khẳng định sau đây có đúng không? ∀α,∀β ta có:

a) \(\cos(α +β)=\cosα+\cosβ\)

b) \(\sin(α -β)=\sinα -\sinβ\)

c) \(\sin(α +β)=\sinα .\cosβ+\cosα.\sinβ\);

d) \(\cos(α -β)=\cosα .\cosβ-\sinα.\sinβ\)

e) \({{\sin 4\alpha } \over {\cos 2\alpha }} = \tan 2\alpha \) (khi các biểu thức có nghĩa)      

f) \(\sin^2α =\sin2α\)

Đáp án

a) Sai

Vì nếu lấy \(β = 0\) thì \(\cos α + 1\) (vô lý)

b) Sai

Vì nếu lấy \(\alpha  = {\pi  \over 2};\,\beta  =  - {\pi  \over 2}\) thì \(\sin \pi  = 2\sin {\pi  \over 2}\) (vô lý)

c) Đúng

d) Sai

Vì nếu lấy \(\alpha  = {\pi  \over 4};\,\beta  =  - {\pi  \over 4}\) thì \(\cos 0 = {\cos ^2}{\pi  \over 4} - {\sin ^2}{\pi  \over 4} \Leftrightarrow 1 = 0\) (vô lý)

e) Sai

Vì nếu lấy \(\alpha  = {\pi  \over 8} \Rightarrow {{\sin {\pi  \over 2}} \over {\cos {\pi  \over 4}}} = \tan {\pi  \over 4} \Leftrightarrow \sqrt 2  = 1\) (vô lý)

g) Sai

Vì nếu lấy \(\alpha  = {\pi  \over 2} \Rightarrow {\sin ^2}{\pi  \over 2} = \sin \pi  \Leftrightarrow 1 = 0\) (vô lý)

 


Bài 39 trang 213 SGK Đại số 10 Nâng cao

Sử dụng  750 = 450 + 30o, hãy tính giá trị lượng giác của góc 750

Sử dụng 15o = 45o - 30o, hãy tính giá trị lượng giác của góc 150. (đối chiếu với kết quả bài tập 29)

Đáp án

a) Ta có:

\(\eqalign{
& \cos {75^0} = \cos ({45^0} + {30^0}) \cr&= \cos {45^0}\cos {30^0} - \sin {45^0}\sin {30^0} \cr
& = {{\sqrt 2 } \over 2}({{\sqrt 3 } \over 2} - {1 \over 2}) = {{\sqrt 2 } \over 4}(\sqrt 3 - 1) \cr
& \sin {75^0} = \sin ({45^0} + {30^0}) \cr&= \sin {45^0}\cos {30^0} + \cos {45^0}\sin {30^0} \cr
& = {{\sqrt 2 } \over 2}({{\sqrt 3 } \over 2} + {1 \over 2}) = {{\sqrt 2 } \over 4}(\sqrt 3 + 1) \cr
& \tan{75^0} = {{\sqrt 3 + 1} \over {\sqrt 3 - 1}} = 2 + \sqrt 3 \cr
& \cot {75^0} = 2 - \sqrt 3 \cr} \)

b) Ta có:

\(\eqalign{
& \cos {15^0} = \cos ({45^0} - {30^0})\cr& = \cos {45^0}\cos {30^0} + \sin {45^0}\sin {30^0} \cr
& = {{\sqrt 2 } \over 2}({{\sqrt 3 } \over 2} + {1 \over 2}) = {{\sqrt 2 } \over 4}(\sqrt 3 + 1)\,( = \sin{75^0}) \cr
& \sin {15^0} = \sin ({45^0} - {30^0}) \cr&= \sin {45^0}\cos {30^0} + \cos {45^0}\sin {30^0} \cr
& = {{\sqrt 2 } \over 2}({{\sqrt 3 } \over 2} - {1 \over 2}) = {{\sqrt 2 } \over 4}(\sqrt 3 - 1) = (\cos{75^0}) \cr
& \tan {15^0} = {{\sqrt 3 - 1} \over {\sqrt 3 + 1}} = 2 - \sqrt 3 \left( { = \cot {{75}^0}} \right) \cr
& \cot {15^0} = 2 + \sqrt 3 \cr} \)

 


Bài 40 trang 213 SGK Đại số 10 Nâng cao

Chứng minh rằng:

a) \(\sin \alpha  + \cos \alpha  = \sqrt 2 \sin (\alpha  + {\pi  \over 4})\)

b) \(\sin \alpha  - \cos \alpha  = \sqrt 2 \sin (\alpha  - {\pi  \over 4})\)

c) \(\tan ({\pi  \over 4} - \alpha ) = {{1 - \tan \alpha } \over {1 + \tan \alpha }}\,\,(\alpha  \ne {\pi  \over 2} + k\pi ;\,\,\alpha  \ne {{3\pi } \over 4} + k\pi )\)

d) \(\tan ({\pi  \over 4} + \alpha ) = {{1 + \tan \alpha } \over {1 - \tan \alpha }}\,\,(\alpha  \ne {\pi  \over 2} + k\pi ;\,\,\alpha  \ne {\pi  \over 4} + k\pi )\)

Đáp án

a) Ta có:

\(\eqalign{
& \sqrt 2 \sin (\alpha + {\pi \over 4}) = \sqrt 2 (\sin \alpha \cos {\pi \over 4} + \sin {\pi \over 4}\cos \alpha ) \cr
& = \sqrt 2 (\sin \alpha {{\sqrt 2 } \over 2} + {{\sqrt 2 } \over 2}\cos \alpha ) \cr
& = \sin \alpha + \cos \alpha \cr} \) 

b) Ta có:

\(\eqalign{
& \sqrt 2 \sin (\alpha - {\pi \over 4}) = \sqrt 2 (\sin \alpha \cos {\pi \over 4} - \sin {\pi \over 4}\cos \alpha ) \cr
& = \sin\alpha - \cos \alpha \cr} \) 

c) Ta có:

\(\tan ({\pi  \over 4} - \alpha ) = {{\tan {\pi  \over 4} - \tan \alpha } \over {1 + \tan {\pi  \over 4}\tan \alpha }} = {{1 - \tan \alpha } \over {1 + \tan \alpha }}\,\)

d) Ta có:

\(\tan ({\pi  \over 4} + \alpha ) = {{\tan {\pi  \over 4} + \tan \alpha } \over {1 - \tan {\pi  \over 4}\tan \alpha }} = {{1 + \tan \alpha } \over {1 - \tan \alpha }}\,\,\)

 


Bài 41 trang 214 SGK Đại số 10 Nâng cao

a) Biết \(\sin \alpha  = {1 \over 3};\,\,\alpha  \in ({\pi  \over 2};\,\pi )\) , hãy tính giá trị lượng giác của góc 2α  và góc \({\alpha  \over 2}\)

b) Sử dụng \({15^0} = {{{{30}^0}} \over 2}\) , hãy kiểm nghiệm lại kết quả của bài tập 39.

Đáp án

a) Ta có:

\(\left\{ \matrix{
\sin \alpha = {1 \over 3} \hfill \cr
{\pi \over 2} < \alpha < \pi \hfill \cr} \right. \)

\(\Rightarrow \cos \alpha = - \sqrt {1 - {{\sin }^2}\alpha } = - \sqrt {1 - {1 \over 9}} = - {{2\sqrt 2 } \over 3}\)

Khi đó:

\(\eqalign{
& \sin 2\alpha = 2\sin \alpha \cos \alpha = 2.{1 \over 3}( - {{2\sqrt 2 } \over 3}) = - {{4\sqrt 2 } \over 9} \cr
& \cos 2\alpha = 1 - 2{\sin ^2}\alpha = {7 \over 9} \cr
& \tan 2\alpha = {{\sin 2\alpha } \over {\cos 2\alpha }} = - {{4\sqrt 2 } \over 7} \cr
& \cot 2\alpha = - {{7\sqrt 2 } \over 8} \cr} \)

Ta có:

\({\pi \over 4} < {\alpha \over 2} < {\pi \over 2} \Rightarrow \left\{ \matrix{
\cos {\alpha \over 2} > 0 \hfill \cr
\sin {\alpha \over 2} > 0 \hfill \cr} \right.\)

\(\eqalign{
& \cos \alpha = 2{\cos ^2}{\alpha \over 2} - 1 \cr&\Rightarrow \cos {\alpha \over 2} = \sqrt {{{1 + \cos \alpha } \over 2}} = \sqrt {{{3 - 2\sqrt 2 } \over 6}} \cr
& \cos \alpha = 1 - {\sin ^2}{\alpha \over 2} \cr&\Rightarrow \sin {\alpha \over 2} = \sqrt {{{1 - \cos \alpha } \over 2}} = \sqrt {{{3 + 2\sqrt 2 } \over 6}} \cr
& \tan {\alpha \over 2} = {{\sin {\alpha \over 2}} \over {\cos {\alpha \over 2}}} = 3 + 2\sqrt 2 \cr
& \cot {\alpha \over 2} = 3 - 2\sqrt 2 \cr} \)

b) Ta có:

\(\eqalign{
& 2{\cos ^2}{15^0} = 1 + \cos {30^0} = 1 + {{\sqrt 3 } \over 2} \cr&\Rightarrow \cos {15^0} = \sqrt {{{2 + \sqrt 3 } \over 2}} \cr
& 2{\sin ^2}{15^0} = 1 - \cos {30^0} = 1 - {{\sqrt 3 } \over 2}\cr& \Rightarrow \sin {15^0} = \sqrt {{{2 - \sqrt 3 } \over 2}} \cr
& \tan {15^0} = \sqrt {{{2 - \sqrt 3 } \over {2 + \sqrt 3 }}} = 2 - \sqrt 3 \cr
& \cot {15^0} = 2 + \sqrt 3 \cr} \)

Giaibaitap.me

Góp ý - Báo lỗi

Vấn đề em gặp phải là gì ?

Hãy viết chi tiết giúp Giaibaitap.me

Bài giải mới nhất

Bài giải mới nhất các môn khác