Bài 31 trang 206 SGK Đại số 10 Nâng cao
Xác định dấu của các giá trị lượng giác sau:
\(\cos 250^0\); \(\tan(-672^0)\); \(\tan {{31\pi } \over 8};\sin ( - {1050^0});\cos {{16\pi } \over 5}\)
Giải
\(\cos{\rm{ }}{250^0} < {\rm{ }}0\) vì \({180^0} < {\rm{ }}{250^0} < {\rm{ }}{270^0}\)
\(\tan( - {672^0}){\rm{ }} = {\rm{ }}\tan{\rm{ }}( - {720^0} + {\rm{ }}{48^0}){\rm{ }} = {\rm{ }}\tan{\rm{ }}{48^0} > {\rm{ }}0\) vì \({0^0} < {\rm{ }}{48^0} < {\rm{ }}{90^0}\)
\(\tan {{31\pi } \over 8} = \tan (4\pi - {\pi \over 8}) = \tan ({\pi \over 8}) = - \tan {\pi \over 8} < 0\)
\(,\left( {0 < {\pi \over 8} < {\pi \over 2}} \right)\)
\(\sin{\rm{ }}( - {1050^0}){\rm{ }} = {\rm{ }}\sin{\rm{ }}( - {3.360^0} + {\rm{ }}{30^0}){\rm{ }} = {\rm{ }}\sin{\rm{ }}{30^0} > {\rm{ }}0\) vì \({0^0} < {\rm{ }}{30^0} < {\rm{ }}{90^0}\)
Ta thấy ngay:
\(\eqalign{
& \sin {30^0} = {1 \over 2} \cr
& \cos {{16\pi } \over 5} = \cos (3\pi + {\pi \over 5}) = - \cos {\pi \over 5}<0\cr&(0 < {\pi \over 5} < {\pi \over 2}) \cr} \)
Bài 32 trang 206 SGK Đại số 10 Nâng cao
Hãy tính các giá trị lượng giác của góc α trong mỗi trường hợp sau:
a) \(\sin \alpha = {4 \over 5}\,\,;\,\,\,\cos \alpha < 0\)
b) \(\cos \alpha = - {8 \over {17}};\,\,\,{\pi \over 2} < \alpha < \pi \)
c) \(\tan \alpha = \sqrt 3 \,\,;\,\,\,\pi < \alpha < {{3\pi } \over 2}\)
Đáp án
a) Ta có:
\(\eqalign{
& \cos \alpha = - \sqrt {1 - {{\sin }^2}\alpha } = - \sqrt {1 - {{16} \over {25}}} = - {3 \over 5} \cr
& \tan \alpha = {{\sin \alpha } \over {\cos \alpha }} = - {4 \over 3} \cr
& \cot \alpha = {1 \over {\tan \alpha }} = - {3 \over 4} \cr} \)
b) Ta có:
\(\eqalign{
& \,{\pi \over 2} < \alpha < \pi \Rightarrow \sin \alpha > 0 \cr
& \Rightarrow \sin \alpha = \sqrt {1 - {{\cos }^2}\alpha } = \sqrt {1 - {{({8 \over {17}})}^2}} = {{15} \over {17}} \cr
& \tan \alpha = {{\sin \alpha } \over {\cos \alpha }} = - {{15} \over 8} \cr
& \cot \alpha = {1 \over {\tan \alpha }} = - {8 \over {15}} \cr} \)
c) Ta có:
\(\eqalign{
& \pi < \alpha < {{3\pi } \over 2} \Rightarrow \cos \alpha < 0 \cr
& \Rightarrow \cos \alpha = {{ - 1} \over {\sqrt {1 + {{\tan }^2}\alpha } }} = {{ - 1} \over {\sqrt {1 + {{(\sqrt 3 )}^2}} }} = - {1 \over 2} \cr
& \sin \alpha = - {{\sqrt 3 } \over 2} \cr
& \cot \alpha = {{\sqrt 3 } \over 3} \cr} \)
Bài 33 trang 206 SGK Đại số 10 Nâng cao
a) Tính \(\sin {{25\pi } \over 6} + \cos {{25\pi } \over 3} + \tan ( - {{25\pi } \over 4})\)
b) Biết \(\sin (\pi + \alpha ) = - {1 \over 3}\) , hãy tính \(\cos (2π – α)\) và \(\sin ({{3\pi } \over 2} - \alpha )\)
Đáp án
a) Ta có:
\(\eqalign{
& \sin {{25\pi } \over 6} = \sin (4\pi + {\pi \over 6}) = \sin {\pi \over 6} = {1 \over 2} \cr
& \cos {{25\pi } \over 3} = \cos (8\pi + {\pi \over 3}) = \cos {\pi \over 3} = {1 \over 2} \cr
& \tan ( - {{25\pi } \over 4}) = - tan(6\pi + {\pi \over 4}) = - \tan {\pi \over 4} = - 1 \cr
& \Rightarrow \sin {{25\pi } \over 6} + \cos {{25\pi } \over 3} + \tan ( - {{25\pi } \over 4}) = 0 \cr} \)
b) Ta có:
\(\eqalign{
& \sin (\pi + \alpha ) = - {1 \over 3} \Rightarrow \sin \alpha = {1 \over 3} \cr
& \cos (2\pi - \alpha ) = \cos ( - \alpha ) = \cos \alpha = \pm \sqrt {1 - {{\sin }^2}\alpha } \cr&= \pm {{2\sqrt 2 } \over 3} \cr
& \tan (\alpha - 7\pi ) = \tan \alpha = {{\sin \alpha } \over {\cos \alpha }} = \pm {1 \over {2\sqrt 2 }} \cr
& \sin ({{3\pi } \over 2} - \alpha ) = \sin (\pi + {\pi \over 2} - \alpha ) = - \sin ({\pi \over 2} - \alpha )\cr& = - \cos \alpha= \pm {{2\sqrt 2 } \over 3} \cr} \)
Giaibaitap.me
Giải bài tập trang 207 bài 3 giá trị lượng giác của các cung (góc) đặc biệt SGK Đại số 10 Nâng cao. Câu 34: Chứng minh rằng...
Giải bài tập trang 213, 214 bài 4 một số công thức lượng giác SGK Đại số 10 Nâng cao. Câu 38: Hỏi mỗi khẳng định sau đây có đúng không? ∀α,∀β ta có:...
Giải bài tập trang 214 bài 4 một số công thức lượng giác SGK Đại số 10 Nâng cao. Câu 42: Chứng minh rằng...
Giải bài tập trang 215 bài 4 một số công thức lượng giác SGK Đại số 10 Nâng cao. Câu 46: Chứng minh rằng...