Trang chủ
Loigiaihay.com 2025

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết
Bình chọn:
3.2 trên 9 phiếu

Giải bài tập Toán 10 Nâng cao

CHƯƠNG III. PHƯƠNG PHÁP TỌA ĐỘ TRONG MẶT PHẲNG

Giải bài tập trang 95 bài 4 đường tròn SGK Hình học 10 Nâng cao. Câu 21: Hỏi trong các mệnh đề sau , mệnh đề nào đúng?...

Bài 21 trang 95 SGK Hình học 10 Nâng cao

Cho phương trình

\({x^2} + {y^2} + px + (p - 1)y = 0\)  (1)

Hỏi trong các mệnh đề sau , mệnh đề nào đúng?

a) (1) là phương trình của một đường tròn.

b) (1) là phương trình của một đường tròn đi qua gốc tọa độ.

c) (1) là phương trình của một đường tròn có tâm \(J\left( { - {p \over 2}; - {{p - 1} \over 2}} \right)\) và bán kính \(R = {1 \over 2}\sqrt {2{p^2} - 2p + 1} \) .

Giải

Phương trình đường tròn có dạng: \({x^2} + {y^2} + 2ax + 2by + c = 0\) , với điều kiện: \({a^2} + {b^2} > c\) .

Ta có:

\(\eqalign{
& 2a = p;\,\,2b = p - 1;\,\,c = 0 \cr
& \Rightarrow a = {p \over 2};\,\,b = {{p - 1} \over 2} \cr
& {a^2} + {b^2} = {1 \over 4}\left( {2{p^2} - 2p + 1} \right) > 0. \cr} \) 

Các mệnh đề đúng là: a), b), d).

Mệnh đề sai: c).

 

Bài 22 trang 95 SGK Hình học 10 Nâng cao

Viết phương trình đường tròn (C) trong mỗi trường hợp sau

a) (C) có tâm I(1, 3) và đi qua điểm A(3, 1)

b) (C) có tâm I(-2, 0) và tiếp xúc với đường thẳng \(\Delta :2x + y - 1 = 0.\)

Giải

a) Bán kính đường tròn (C) là: \(IA = \sqrt {{2^2} + {{( - 2)}^2}}  = 2\sqrt 2 \)

Phương trình đường tròn (C) là: \({\left( {x - 1} \right)^2} + {\left( {y - 3} \right)^2} = 8\)

b)  Bán kính của đường tròn (C) là:

 \(R = d\left( {I,\Delta } \right) = {{|2.( - 2) + 0 - 1|} \over {\sqrt {{2^2} + {1^2}} }} = {5 \over {\sqrt 5 }} = \sqrt 5 \)

Phương trình đường tròn (C) là:  \({\left( {x + 2} \right)^2} + {y^2} = 5.\)

 


Bài 23 trang 95 SGK Hình học 10 Nâng cao

Tìm tâm và bán kính của đường tròn cho bởi mỗi phương trình sau

a) \({x^2} + {y^2} - 2x - 2y - 2 = 0;\)

b) \({x^2} + {y^2} - 4x - 6y + 2 = 0;\)

c) \(2{x^2} + 2{y^2} - 5x - 4y + 1 + {m^2} = 0.\)

Giải

a) Ta có: \(a = -1;\,b = -1;\,c =  - 2\)

 \(R = \sqrt {{a^2} + {b^2} - c}  = \sqrt {{1^2} + {1^2} + 2}  = 2\)

Tâm đường tròn là: I(1, 1) bán kính R=2.

b) Ta có: \(a =  - 2;\,b =  - 3;\,c = 2\)

 \(R = \sqrt {{a^2} + {b^2} - c}  = \sqrt {{2^2} + {3^2} - 2}  = \sqrt {11} \)

Đường tròn đã cho có tâm I(2, 3) , bán kính \(R = \sqrt {11} \)

c)

\(\eqalign{
& 2{x^2} + 2{y^2} - 5x - 4y + 1 + {m^2} = 0 \cr
& \Leftrightarrow {x^2} + {y^2} - {5 \over 2}x - 2y + {{1 + {m^2}} \over 2} = 0 \cr} \) 

Ta có: \(a =  - {5 \over 4};\,b =  - 1;\,c = {{1 + {m^2}} \over 2}\)

Điều kiện: \({a^2} + {b^2} - c > 0 \Leftrightarrow {{25} \over {16}} + 1 - {{1 + {m^2}} \over 2} > 0\)

\({a^2} + {b^2} - c > 0 \Leftrightarrow {{25} \over {16}} + 1 - {{1 + {m^2}} \over 2} > 0 \)

\(\Leftrightarrow {{33 - 8{m^2}} \over {16}} > 0 \Leftrightarrow {m^2} < {{33} \over 8} \Leftrightarrow |m| < \sqrt {{{33} \over 8}} \)

Với điều kiện \(|m| < \sqrt {{{33} \over 8}} \) thì (C) là đường tròn có tâm \(I\left( {{5 \over 4};1} \right)\) và bán kính \(R = {1 \over 4}\sqrt {33 - 8{m^2}} \)

Giaibaitap.me

Góp ý - Báo lỗi

Vấn đề em gặp phải là gì ?

Hãy viết chi tiết giúp Giaibaitap.me

Bài giải mới nhất

Bài giải mới nhất các môn khác