Bài 24 trang 95 SGK Hình học 10 Nâng cao
Viết phương trình đường tròn đi qua ba điểm \(M(1; - 2),N(1;2),P(5;2).\)
Giải
Phương trình đường tròn có dạng: \({x^2} + {y^2} + 2ax + 2by + c = 0.\)
Do M, N, P thuộc đường tròn nên ta có hệ phương trình với ba ẩn số a, b, c.
\(\left\{ \matrix{
5 + 2a - 4b + c = 0 \hfill \cr
5 + 2a + 4b + c = 0 \hfill \cr
29 + 10a + 4b + c = 0 \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{
a = - 3 \hfill \cr
b = 0 \hfill \cr
c = 1 \hfill \cr} \right.\)
Vậy phương trình cần tìm là: \({x^2} + {y^2} - 6x + 1 = 0\) hay \({\left( {x - 3} \right)^2} + {y^2} = 8\)
Bài 25 trang 95 SGK Hình học 10 Nâng cao
a) Viết phương trình đường tròn tiếp xúc với hai trục tọa độ và đi qua điểm
b) Viết phương trình đường tròn đi qua hai điểm (1, 1); (1, 4) và tiếp xúc với trục Ox.
Giải
a) Vì M(2; 1) nằm trong góc phần tư thứ nhất nên đường tròn cần tìm (C) cũng ở trong góc phần tư thứ nhất.
(C) tiếp xúc với Ox và Oy nên (C) có tâm I (a; a) và bán kính R= a ( a > 0 ).
Do đó (C) có phương trình là: \({\left( {x - a} \right)^2} + {\left( {y - a} \right)^2} = {a^2}\)
Vì \(M(2;1)\in(C)\) nên
\(\eqalign{
& {\left( {2 - a} \right)^2} + {\left( {1 - a} \right)^2} = {a^2} \Leftrightarrow {a^2} - 6a + 5 = 0\,\,(C) \cr
& \Leftrightarrow \left[ \matrix{
a = 1 \hfill \cr
a = 5 \hfill \cr} \right. \cr} \)
+) Với \(a =1\) ta có (C): \({\left( {x - 1} \right)^2} + {\left( {y - 1} \right)^2} = 1.\)
+) Với \(a=5\) ta có \((C):{\left( {x - 5} \right)^2} + {\left( {y - 5} \right)^2} = 25.\)
b) Phương trình đường thẳng Ox: \(y = 0\).
Giả sử: \(I (a; b)\) là tâm của đường tròn cần tìm.
Ta có: \(R = d\left( {I;{\rm{Ox}}} \right) = |b|\)
Phương trình đường tròn có dạng
\((C):{\left( {x - a} \right)^2} + {\left( {y - b} \right)^2} = {b^2}\)
Vì \(\left( {1;1} \right) \in (C)\) và \(\left( {1;4} \right) \in (C)\) nên ta có hệ:
\(\left\{ \matrix{
{\left( {1 - a} \right)^2} + {\left( {1 - b} \right)^2} = {b^2}\,\,\,(\,1\,) \hfill \cr
{\left( {1 - a} \right)^2} + {\left( {4 - b} \right)^2} = {b^2}\,\,\,(2) \hfill \cr} \right.\)
Từ hệ trên ta suy ra: \({\left( {1 - b} \right)^2} = {\left( {4 - b} \right)^2}\)\(\Leftrightarrow b = {5 \over 2}.\)
Thay \(b = {5 \over 2}\) vào (1) ta được: \(a = 3, a = -1\)
Vậy có hai phương trình đường tròn thỏa mãn yêu cầu bài toán
\({\left( {x - 3} \right)^2} + {\left( {y - {5 \over 3}} \right)^2} = {{25} \over 4};\)
\({\left( {x + 1} \right)^2} + {\left( {y - {5 \over 2}} \right)^2} = {{25} \over 4}.\)
Bài 26 trang 95 SGK Hình học 10 Nâng cao
Tìm tọa độ các giao điểm của đường thẳng
\(\Delta :\left\{ \matrix{
x = 1 + 2t \hfill \cr
y = - 2 + t \hfill \cr} \right.\)
và đường tròn (C): \({\left( {x - 1} \right)^2} + {\left( {y - 2} \right)^2} = 16\)
Giải
Thay \(x = 1 + 2t;\,y = - 2 + t\) vào phương trình đường tròn ta được:
\(\eqalign{
& {\left( {2t} \right)^2} + {\left( {t - 4} \right)^2} = 16 \Leftrightarrow 5{t^2} - 8t = 0 \cr
& \Leftrightarrow \left[ \matrix{
t = 0 \hfill \cr
t = {8 \over 5} \hfill \cr} \right. \cr} \)
+) Với \(t = 0\) ta có \(x = 1, y = -2\) và có giao điểm \(A(1, -2)\)
+) Với \(t = {8 \over 5}\) ta có \(x = {{21} \over 5};\,y = - {2 \over 5}\) và có giao điểm \(B\left( {{{21} \over 5};{{ - 2} \over 5}} \right).\)
Giaibaitap.me
Giải bài tập trang 96 bài 4 đường tròn SGK Hình học 10 Nâng cao. Câu 27: Viết phương trình tiếp tuyến của đường tròn...
Giải bài tập trang 102 bài 5 elip SGK Hình học 10 Nâng cao. Câu 30: Hỏi trong các mệnh đề sau, mệnh đề nào đúng?...
Giải bài tập trang 103 bài 5 đường elip SGK Hình học 10 Nâng cao. Câu 33: Tính độ dài dây cung của (E) đi qua một tiêu điểm và vuông góc với trục tiêu...
Giải bài tập trang 108, 109 bài 6 đường hypebol SGK Hình học 10 Nâng cao. Câu 36: Cho hypebol (H) có phương trình chính tắc...