Bài 33 trang 103 SGK Hình học 10 Nâng cao
Cho elip \((E):{{{x^2}} \over 9} + {{{y^2}} \over 1} = 1.\)
a) Tính độ dài dây cung của (E) đi qua một tiêu điểm và vuông góc với trục tiêu (đoạn thẳng nối hai điểm của elip gọi là dây cung của elip, trục chứa các tiêu điểm gọi là trục tiêu của elip).
b) Tìm trên (E) điểm M sao cho \(M{F_1} = 2M{F_2}\) , trong đó \({F_1},{F_2}\) lần lượt là các tiêu điểm của (E) nằm bên trái và bên phải trục tung.
Giải
a) Ta có: \(a = 3;b = 1;c = \sqrt {{a^2} - {b^2}} = 2\sqrt 2 .\)
\({F_1}\left( { - 2\sqrt 2 ;0} \right);\,{F_2}\left( {2\sqrt 2 ;0} \right)\)
Gọi M là điểm trên (E) có hoành độ \(x = 2\sqrt 2 \)
Thay \(x = 2\sqrt 2 \) vào phương trình (E) ta được:
\({8 \over 9} + {{{y^2}} \over 1} = 1 \Leftrightarrow {y^2} = {1 \over 9} \Leftrightarrow y = \pm {1 \over 3}.\)
Vậy \({M_1}\left( {2\sqrt 2 ;{1 \over 3}} \right);{M_2}\left( {2\sqrt 2 ; - {1 \over 3}} \right)\) và độ dài dây cung cần tìm là \({M_1}{M_2} = {2 \over 3}\)
b) Ta có:
\(\eqalign{
& M{F_1} = a + {c \over a}x = 3 + {{2\sqrt 2 } \over 3}x \cr
& M{F_2} = a - {c \over a}x = 3 - {{2\sqrt 2 } \over 3}x \cr
& M{F_1} = 2M{F_2} \Leftrightarrow 3 + {{2\sqrt 2 } \over 3}x = 6 - {{4\sqrt 2 } \over 3}x \cr&\Leftrightarrow 2\sqrt 2 x = 3 \Leftrightarrow x = {{3\sqrt 2 } \over 4}. \cr} \)
Thay \(x = {{3\sqrt 2 } \over 4}\) vào phương trình elip ta được:
\({2 \over {16}} + {y^2} = 1 \Leftrightarrow {y^2} = {7 \over 8} \Leftrightarrow y = \pm {{\sqrt {14} } \over 4}.\)
Vậy \({M_1}\left( {{{3\sqrt 2 } \over 4};{{\sqrt {14} } \over 4}} \right);{M_2}\left( {{{3\sqrt 2 } \over 4}; - {{\sqrt {14} } \over 4}} \right).\)
Bài 34 trang 103 SGK Hình học 10 nâng cao
Vệ tinh nhân tạo đầu tiên được Liên Xô (cũ) phóng từ Trái đất năm 1957. Quỹ đạo của vệ tinh đó là một đường elip nhận tâm Trái Đất là một tiêu điểm. Nguowiff ta đo được vệ tinh cách bề mặt Trái Đất gần nhất là 583 dặm và xa nhất là 1342 dặm (1 dặm \( \approx 1,609km\)). Tìm tâm sai của quỹ đạo đó biết bán kính của Trái Đất xấp xỉ 4000 dặm.
Giải
Giả sử tâm trái đất là: \({F_1}\left( { - c;0} \right)\)
\(M{F_1}\) có giá trị nhỏ nhất là: \(a - c\) và có giá trị lớn nhất là \(a + c \). Do đó
\(\eqalign{
& a + c = 1342 + 4000 = 5342 \cr
& a - c = 583 + 4000 = 4583 \cr} \)
Từ đó suy ra: \(2a = 9925;2c = 759.\)
Do đó: \(e = {c \over a} = {{759} \over {9925}} \approx 0,07647.\)
Bài 35 trang 103 SGK Hình học 10 nâng cao
Trong mặt phẳng tọa độ Oxy, cho điểm A chạy trên trục Ox, điểm B chạy trên trục Oy nhưng độ dài đoạn AB bằng a không đổi. Tìm tập hợp các điểm M thuộc đoạn AB sao cho \(MB = 2MA.\)
Giải
Giả sử: \(A\left( {{x_0};0} \right);B\left( {0;{y_0}} \right)\)
\(AB = a \Leftrightarrow \sqrt {x_0^2 + y_0^2} = a \Leftrightarrow x_0^2 + y_0^2 = {a^2}\)
M thuộc đoạn AB và \(MB = 2MA\) nên \(\overrightarrow {AM} = {1 \over 3}\overrightarrow {AB} \)
Giả sử: M(x, y) , khi đó: \(\overrightarrow {AM} = \left( {x - {x_0};y} \right),\overrightarrow {AB} = \left( { - {x_0};{y_0}} \right);\)
\(3\overrightarrow {AM} = \overrightarrow {AB} .\)
\(\eqalign{
& \Leftrightarrow \left\{ \matrix{
3\left( {x - {x_0}} \right) = - {x_0} \hfill \cr
3y = {y_0} \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{
{x_0} = {3 \over 2}x \hfill \cr
{y_0} = 3y \hfill \cr} \right. \cr
& x_0^2 + y_0^2 = {a^2} \Leftrightarrow {9 \over 4}{x^2} + 9{y^2} = {a^2} \cr&\Leftrightarrow {{{x^2}} \over {{{\left( {{{2a} \over 3}} \right)}^2}}} + {{{y^2}} \over {{{\left( {{a \over 3}} \right)}^2}}} = 1 \cr} \)
Vậy tập hợp điểm M là elip có phương trình là:
\({{{x^2}} \over {{{\left( {{{2a} \over 3}} \right)}^2}}} + {{{y^2}} \over {{{\left( {{a \over 3}} \right)}^2}}} = 1.\)
Giaibaitap.me
Giải bài tập trang 108, 109 bài 6 đường hypebol SGK Hình học 10 Nâng cao. Câu 36: Cho hypebol (H) có phương trình chính tắc...
Giải bài tập trang 109 bài 6 đường hypebol SGK Hình học 10 Nâng cao. Câu 39: Viết phương trình chính tắc của hypebol (H) trong mỗi trường hợp sau...
Giải bài tập trang 112 bài 7 đường parabol SGK Hình học 10 Nâng cao. Câu 42: Phương trình chính tắc của parabol...
Giải bài tập trang 112 bài 7 đường parabol SGK Hình học 10 Nâng cao. Câu 45: Cho dây cung AB đi qua tiêu điểm của parabol (P)...