Trang chủ
Loigiaihay.com 2025

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết
Bình chọn:
3.5 trên 12 phiếu

Giải bài tập Toán 10 Nâng cao

CHƯƠNG III. PHƯƠNG PHÁP TỌA ĐỘ TRONG MẶT PHẲNG

Giải bài tập trang 96 bài 4 đường tròn SGK Hình học 10 Nâng cao. Câu 27: Viết phương trình tiếp tuyến của đường tròn...

Bài 27 trang 96 SGK Hình học 10 Nâng cao

Viết phương trình tiếp tuyến của đường tròn \({x^2} + {y^2} = 4\) trong mỗi trường hợp sau

a) Tiếp tuyến song song với đường thẳng \(3x - y + 17 = 0;\)

b) Tiếp tuyến vuông góc với đường thẳng \(x + 2y - 5 = 0;\)

c) Tiếp tuyến đi qua điểm (2, -2)

Giải

Đường tròn \((C):{x^2} + {y^2} = 4\) có tâm O ( 0;0 ) bán kính R = 2.

a) Tiếp tuyến song song với đường thẳng \(3x - y + 17 = 0;\) có dạng \(\Delta :3x - y + c = 0.\)

Ta có: \(d\left( {O,\Delta } \right) = R \Leftrightarrow {{|c|} \over {\sqrt {{3^2} + {1^2}} }} = 2 \Leftrightarrow c =  \pm 2\sqrt {10} .\)

Vậy các tiếp tuyến cần tìm là:

\(3x - y - 2\sqrt {10}  = 0;\,\,\,3x - y + 2\sqrt {10}  = 0.\)

b) Tiếp tuyến vuông góc với đường thẳng \(x + 2y - 5 = 0;\) có dạng:

\(d:\,2x - y + c = 0.\) 

Ta có: \(d\left( {O,d} \right) = R \Leftrightarrow {{|c|} \over {\sqrt {{2^2} + {1^2}} }} = 2 \Leftrightarrow c =  \pm 2\sqrt 5 .\)

Vậy các tiếp tuyến cần tìm là: 

\(2x - y - 2\sqrt 5  = 0\,;\,\,\,\,\,2x - y + 2\sqrt 5  = 0.\)

 


Bài 28 trang 96 SGK Hình học 10 Nâng cao

Xét vị trí tương đối của đường thẳng \(\Delta \) và đường tròn (C) sau đây 

\(\eqalign{
& \Delta :3x + y + m = 0, \cr
& (C):{x^2} + {y^2} - 4x + 2y + 1 = 0. \cr} \)

Giải

(C) có tâm \(I(2, -1)\) và bán kính \(R = \sqrt {{2^2} + {1^2} - 1}  = 2.\)

Khoảng cách từ I đến \(\Delta \)  là:

\(d\left( {I,\Delta } \right) = {{|3.2 - 1 + m|} \over {\sqrt {{3^2} + {1^2}} }} = {{|5 + m|} \over {\sqrt {10} }}\)

+) Nếu

\({{|5 + m|} \over {\sqrt {10} }} = 2 \Leftrightarrow |m + 5| > 2\sqrt {10}\)

\(\Leftrightarrow \left[ \matrix{
m < - 5 -2 \sqrt {10} \hfill \cr
m > - 5 + 2\sqrt {10} \hfill \cr} \right.\)

 thì \(\Delta \) và (C) cắt nhau.

+) Nếu \({{|5 + m|} \over {\sqrt {10} }} = 2 \Leftrightarrow |5 + m| = 2\sqrt {10}  \Leftrightarrow m =  - 5 \pm 2\sqrt {10} \) thì \(\Delta \) và (C) tiếp xúc.

+) Nếu  \({{|5 + m|} \over {\sqrt {10} }} < 2 \Leftrightarrow |5 + m| < 2\sqrt {10} \)

\(\Leftrightarrow  - 5 - 2\sqrt {10}  < m <  - 5 + 2\sqrt {10} \) thì \(\Delta \) và (C) không cắt nhau.

 


Bài 29 trang 96 SGK Hình học 10 Nâng cao

Tìm tọa độ các giao điểm của hai đường tròn sau đây

\(\eqalign{
& (C):{x^2} + {y^2} + 2x + 2y - 1 = 0, \cr
& (C'):{x^2} + {y^2} - 2x + 2y - 7 = 0. \cr} \) 

Giải

\(\eqalign{
& (C):{x^2} + {y^2} + 2x + 2y - 1 = 0\,\,\,\,(\,1\,) \cr
& (C'):{x^2} + {y^2} - 2x + 2y - 7 = 0\,\,\,(2) \cr} \) 

Lấy (1) trừ (2)  ta được \(4x + 6 = 0 \Leftrightarrow x =  - {3 \over 2}.\)

Thay \(x =  - {3 \over 2}\) vào (1) ta được:

 \({9 \over 4} + {y^2} - 3 + 2y - 1 = 0 \Leftrightarrow {y^2} + 2y - {7 \over 4} = 0\)

\(\Leftrightarrow y =  - 1 \pm {{\sqrt {11} } \over 2}\)

Tọa độ hai giao điểm của (C) và (C’) là:

\(\left( { - {3 \over 2}; - 1 - {{\sqrt {11} } \over 2}} \right);\,\,\,\left( { - {3 \over 2}; - 1 + {{\sqrt {11} } \over 2}} \right)\)

Giaibaitap.me

Góp ý - Báo lỗi

Vấn đề em gặp phải là gì ?

Hãy viết chi tiết giúp Giaibaitap.me

Bài giải mới nhất

Bài giải mới nhất các môn khác