Câu 85 trang 19 Sách Bài Tập (SBT) Toán 9 Tập 1
Cho biểu thức:
\(P = {{\sqrt x + 1} \over {\sqrt x - 2}} + {{2\sqrt x } \over {\sqrt x + 2}} + {{2 + 5\sqrt x } \over {x - 4}}\)
a) Rút gọn P với \(x \ge 0\) và \(x \ne 4.\)
b) Tìm x để P = 2.
Gợi ý làm bài
a) Điều kiện: \(x \ge 0,x \ne 4\)
Ta có:
\(P = {{\sqrt x + 1} \over {\sqrt x - 2}} + {{2\sqrt x } \over {\sqrt x + 2}} + {{2 + 5\sqrt x } \over {x - 4}}\)
\( = {{(\sqrt x + 1)(\sqrt x + 2)} \over {{{(\sqrt x )}^2} - {2^2}}} + {{2\sqrt x (\sqrt x - 2)} \over {{{(\sqrt x )}^2} - {2^2}}} - {{2 + 5\sqrt x } \over {x - 4}}\)
\( = {{x + 2\sqrt x + \sqrt x + 2} \over {x - 4}} + {{2x - 4\sqrt x } \over {x - 4}} - {{2 + 5\sqrt x } \over {x - 4}}\)
\( = {{x + 3\sqrt x + 2 + 2x - 4\sqrt x - 2 - 5\sqrt x } \over {x - 4}}\)
\( = {{3x - 6\sqrt x } \over {x - 4}} = {{3\sqrt x (\sqrt x - 2)} \over {(\sqrt x + 2)(\sqrt x - 2)}} = {{3\sqrt x } \over {\sqrt x + 2}}\)
b) Ta có: P = 2 \(\eqalign{
& \Leftrightarrow {{3\sqrt x } \over {\sqrt x + 2}} = 2 \cr
& \Leftrightarrow 3\sqrt x = 2(\sqrt x + 2) \Leftrightarrow 3\sqrt x = 2\sqrt x + 4 \cr} \)
\( \Leftrightarrow \sqrt x = 4 \Leftrightarrow x = 16\)
Câu 86 trang 19 Sách Bài Tập (SBT) Toán 9 Tập 1
Cho biểu thức:
\(Q = \left( {{1 \over {\sqrt a - 1}} - {1 \over {\sqrt a }}} \right):\left( {{{\sqrt a + 1} \over {\sqrt a - 2}} - {{\sqrt a + 2} \over {\sqrt a - 1}}} \right)\)
a) Rút gọn Q với \(a > 0,a \ne 4\) và \(a \ne 1\).
b) Tìm giá trị của a để Q dương.
Gợi ý làm bài
a) Ta có:
\(Q = \left( {{1 \over {\sqrt a - 1}} - {1 \over {\sqrt a }}} \right):\left( {{{\sqrt a + 1} \over {\sqrt a - 2}} - {{\sqrt a + 2} \over {\sqrt a - 1}}} \right)\)
\( = {{\sqrt a - \left( {\sqrt a - 1} \right)} \over {\sqrt a \left( {\sqrt a - 1} \right)}}:{{\left( {\sqrt a + 1} \right)\left( {\sqrt a - 1} \right) - \left( {\sqrt a + 2} \right)\left( {\sqrt a - 2} \right)} \over {\left( {\sqrt a - 2} \right)\left( {\sqrt a - 1} \right)}}\)
\( = {1 \over {\sqrt a \left( {\sqrt a - 1} \right)}}:{{a - 1 - 1 + 4} \over {\left( {\sqrt a - 2} \right)\left( {\sqrt a - 1} \right)}}\)
\( = {1 \over {\sqrt a \left( {\sqrt a - 1} \right)}}.{{\left( {\sqrt a - 2} \right)\left( {\sqrt {a - 1} } \right)} \over 3}\)
\( = {{\sqrt a - 2} \over {3\sqrt a }}\) (với \(a > 0,a \ne 4\) và \(a \ne 1\))
b) Ta có: \(a \ge 0\) nên \(\sqrt a > 0\)
Khi đó: \(Q = {{\sqrt a - 2} \over {3\sqrt a }}\) dương khi \(\sqrt a - 2 > 0\)
Ta có: \(\sqrt a - 2 > 0 \Leftrightarrow \sqrt a > 2 \Leftrightarrow a > 4\)
Vậy khi a>4 thì Q>0
Câu 87 trang 19 Sách Bài Tập (SBT) Toán 9 Tập 1
Với ba số a, b, c không âm, chứng minh bất đẳng thức:
\(a + b + c \ge \sqrt {ab} + \sqrt {bc} + \sqrt {ca} \)
Hãy mở rộng kết quả cho trường hợp bốn số, năm số không âm.
Gợi ý làm bài
Vì a, b và c không âm nên và $\sqrt c $ tồn tại.
Ta có: \({\left( {\sqrt a - \sqrt b } \right)^2} \ge 0\) suy ra:
\(\eqalign{
& a + b - 2\sqrt {ab} \ge 0 \Leftrightarrow a + b \ge 2\sqrt {ab} \cr
& \Leftrightarrow {{a + b} \over 2} \ge \sqrt {ab} \,\,(1) \cr} \)
\({\left( {\sqrt b - \sqrt c } \right)^2} \ge 0\) suy ra:
\(\eqalign{
& b + c - 2\sqrt {bc} \ge 0 \Leftrightarrow b + c \ge 2\sqrt {bc} \cr
& \Leftrightarrow {{b + c} \over 2} \ge \sqrt {bc} \,\,(2) \cr} \)
\({\left( {\sqrt c - \sqrt a } \right)^2} \ge 0\) suy ra:
\(\eqalign{
& c + a - 2\sqrt {ca} \ge 0 \Leftrightarrow c + a \ge 2\sqrt {ca} \cr
& \Leftrightarrow {{c + a} \over 2} \ge \sqrt {ca} \,\,(3) \cr} \)
Cộng từng vế các đẳng thức (1), (2) và (3), ta có:
\({{a + b} \over 2} + {{b + c} \over 2} + {{c + a} \over 2} \ge \sqrt {ab} + \sqrt {bc} + \sqrt {ca} \)
\( \Leftrightarrow a + b + c \ge \sqrt {ab} + \sqrt {bc} + \sqrt {ca} \)
- Với bốn số a, b, c, d không âm, ta có:
\(a + b + c + d \ge \sqrt {ab} + \sqrt {bc} + \sqrt {cd} + \sqrt {da} \)
- Với năm số a, b, c, d, e không âm, ta có:
\(a + b + c + d + e \ge \sqrt {ab} + \sqrt {bc} + \sqrt {cd} + \sqrt {de} + \sqrt {ea} \)
Giaibaitap.me
Giải bài tập trang 20 bài 9 căn bậc ba Sách bài tập (SBT) Toán 9 tập 1. Câu 88: Tính (không dùng bảng số hay máy tính bỏ túi)...
Giải bài tập trang 20 bài 9 căn bậc ba Sách bài tập (SBT) Toán 9 tập 1. Câu 92: So sánh (không dùng bảng tính hay máy tính bỏ túi)...
Giải bài tập trang 21 bài ôn tập chương I - căn bậc hai căn bậc ba Sách bài tập (SBT) Toán 9 tập 1. Câu 96: Nếu x thỏa mãn điều kiện...
Giải bài tập trang 22 bài ôn tập chương I - căn bậc hai căn bậc ba Sách bài tập (SBT) Toán 9 tập 1. Câu 100: Rút gọn các biểu thức...