Trang chủ
Loigiaihay.com 2025

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết
Bình chọn:
4.9 trên 7 phiếu

Giải sách bài tập Toán 9

CHƯƠNG III: HỆ HAI PHƯƠNG TRÌNH BẬC NHẤT HAI ẨN

Giải bài tập trang 12 bài 4 giải hệ phương trình bằng phương pháp cộng đại số Sách bài tập (SBT) Toán 9 tập 2. Câu 32: Tìm giá trị của m để đường thẳng (d)...

Câu 32 trang 12 Sách bài tập (SBT) Toán 9 tập 2

Tìm giá trị của m để đường thẳng (d): \(y = \left( {2m - 5} \right)x - 5m\) đi qua giao điểm của hai đường thẳng \(\left( {{d_1}} \right):2x + 3y = 7\) và \(\left( {{d_2}} \right):3x + 2y = 13\)

Giải

Tọa độ giao điểm M của (d1) và (d2) là nghiệm của hệ phương trình:

\(\eqalign{
& \left\{ {\matrix{
{2x + 3y = 7} \cr 
{3x + 2y = 13} \cr
} } \right. \Leftrightarrow \left\{ {\matrix{
{4x + 6y = 14} \cr 
{9x + 6y = 39} \cr
} } \right. \cr 
& \Leftrightarrow \left\{ {\matrix{
{5x = 25} \cr 
{3x + 2y = 13} \cr
} } \right. \Leftrightarrow \left\{ {\matrix{
{x = 5} \cr 
{3.5 + 2y = 13} \cr
} } \right. \cr 
& \Leftrightarrow \left\{ {\matrix{
{x = 5} \cr 
{y = - 1} \cr} } \right. \cr} \)

Tọa độ M (5; -1)

Đường thẳng \(\left( d \right):y = \left( {2m - 5} \right)x - 5m\) đi qua M(5; -1) nên tọa độ của M nghiệm đúng phương trình đường thẳng:

\(\eqalign{
& - 1 = \left( {2m - 5} \right).5 - 5m \Leftrightarrow - 1 = 10m - 25 - 5m \cr 
& \Leftrightarrow 5m = 24 \Leftrightarrow m = 4,8 \cr} \)

Vậy với m = 4,8 thì đường thẳng (d) đi qua giao điểm của (d1) và (d2).

 


Câu 33 trang 12 Sách bài tập (SBT) Toán 9 tập 2

Tìm giá trị của m để ba đường thẳng sau đồng quy:

\(\eqalign{
& \left( {{d_1}} \right):5x + 11y = 8 \cr 
& \left( {{d_2}} \right):10x - 7y = 74 \cr 
& \left( {{d_3}} \right):4mx + \left( {2m - 1} \right)y = m + 2 \cr} \)

Giải

Tọa độ giao điểm của (d1) và (d2) là nghiệm của hệ phương trình:

\(\eqalign{
& \left\{ {\matrix{
{5x + 11y = 8} \cr 
{10x - 7y = 74} \cr
} } \right. \Leftrightarrow \left\{ {\matrix{
{10x + 22y = 16} \cr 
{10x - 7y = 74} \cr
} } \right. \cr 
& \Leftrightarrow \left\{ {\matrix{
{29y = - 58} \cr 
{5x + 11y = 8} \cr
} } \right. \Leftrightarrow \left\{ {\matrix{
{y = - 2} \cr 
{5x + 11.\left( { - 2} \right) = 8} \cr
} } \right. \cr 
& \Leftrightarrow \left\{ {\matrix{
{y = - 2} \cr 
{5x = 30} \cr
} } \right. \Leftrightarrow \left\{ {\matrix{
{y = - 2} \cr 
{x = 6} \cr} } \right. \cr} \)

Tọa độ giao điểm của (d1) và (d2) là (x; y) = (6; -2)

Để ba đường thẳng đồng quy thì đường thẳng (d3) phải đi qua giao điểm của hai đường thẳng (d1) và (d2) nên cặp (6; -2) nghiệm đúng phương trình đường thẳng (d3).

Thay x = 6; y = -2 ta có:

\(\eqalign{
& 24m + \left( {2m - 1} \right)\left( { - 2} \right) = m + 2 \cr 
& \Leftrightarrow 24m - 4m + 2 = m + 2 \cr 
& \Leftrightarrow 19m = 0 \cr 
& \Leftrightarrow + = 0 \cr} \)

Vậy với m = 0 thì ba đường thẳng (d1), (d2), (d3) đồng quy tại điểm có tọa độ (6; -2).

 


Câu 34 trang 12 Sách bài tập (SBT) Toán 9 tập 2

Nghiệm chung của ba phương trình đã cho được gọi là nghiệm của hệ gồm ba phương trình ấy. Giải hệ phương trình là tìm nghiệm chung của tất cả các phương trình trong hệ. Hãy giải các hệ phương trình sau:

\(a)\left\{ {\matrix{
{3x + 5y = 34} \cr 
{4x - 5y = - 13} \cr 
{5x - 2y = 5} \cr} } \right.\)

\(b)\left\{ {\matrix{
{6x - 5y = - 49} \cr 
{ - 3x + 2y = 22} \cr 
{7x + 5y = 10} \cr} } \right.\)

Giải

\(a)\left\{ {\matrix{
{3x + 5y = 34} \cr 
{4x - 5y = - 13} \cr 
{5x - 2y = 5} \cr} } \right.\)

Ta giải hệ phương trình:

\(\eqalign{
& \left\{ {\matrix{
{3x + 5y = 34} \cr 
{4x - 5y = - 13} \cr
} } \right. \Leftrightarrow \left\{ {\matrix{
{7x = 21} \cr 
{4x - 5y = - 13} \cr
} } \right. \cr 
& \Leftrightarrow \left\{ {\matrix{
{x = 3} \cr 
{4.3 - 5y = - 13} \cr
} } \right. \Leftrightarrow \left\{ {\matrix{
{x = 3} \cr 
{ - 5y = - 25} \cr
} } \right. \cr 
& \Leftrightarrow \left\{ {\matrix{
{x = 3} \cr 
{y = 5} \cr} } \right. \cr} \)

Thay x = 3 và y = 5 vào vế trái phương trình (3):

\(5.3 - 2.5 = 15 - 10 = 5\)

Vậy cặp nghiệm (x; y) = (3; 5) là nghiệm của phương trình (3).

Vậy hệ phương trình đã cho có một nghiệm (x; y) =  (3;5)

\(b)\left\{ {\matrix{
{6x - 5y = - 49} \cr 
{ - 3x + 2y = 22} \cr 
{7x + 5y = 10} \cr} } \right.\)

Ta giải hệ phương trình:

\(\eqalign{
& \left\{ {\matrix{
{6x - 5y = - 49} \cr 
{7x + 5y = 10} \cr
} } \right. \Leftrightarrow \left\{ {\matrix{
{13x = - 39} \cr 
{7x + 5y = 10} \cr
} } \right. \cr 
& \Leftrightarrow \left\{ {\matrix{
{x = - 3} \cr 
{7.\left( { - 3} \right) + 5y = 10} \cr
} } \right. \Leftrightarrow \left\{ {\matrix{
{x = - 3} \cr 
{y = {{31} \over 5}} \cr} } \right. \cr} \)

Thay x = -3; \(y = {{31} \over 5}\) vào vế trái phương trình (2):

\( - 3.\left( { - 3} \right) + 2.{{31} \over 5} = 9 + {{62} \over 5} = {{107} \over 5} \ne 22\)

Vậy cặp \(\left( {x =  - 3;y = {{31} \over 5}} \right)\) không phải là nghiệm của phương trình (2).

Vậy hệ phương trình đã cho vô nghiệm.

Giaibaitap.me

Góp ý - Báo lỗi

Vấn đề em gặp phải là gì ?

Hãy viết chi tiết giúp Giaibaitap.me

Bài giải mới nhất

Bài giải mới nhất các môn khác