Câu 29 trang 11 Sách bài tập (SBT) Toán 9 tập 2
Tìm giá trị của a và b để đường thẳng ax – by = 4 đi qua hai điểm A (4; 3), B(-6; -7).
Giải
Đường thẳng ax – by = 4 đi qua A(4; 3) và B(-6; -7) nên tọa độ A và B nghiệm đúng phương trình đường thẳng.
Điểm A: 4a – 3b = 4
Điểm B: - 6a + 7b = 4
Hai số a và b là nghiệm của hệ phương trình:
\(\eqalign{
& \left\{ {\matrix{
{4a - 3b = 4} \cr
{ - 6a + 7b = 4} \cr
} } \right. \Leftrightarrow \left\{ {\matrix{
{12a - 9b = 12} \cr
{ - 12a + 14b = 8} \cr
} } \right. \cr
& \Leftrightarrow \left\{ {\matrix{
{5b = 20} \cr
{4a - 3b = 4} \cr
} } \right. \Leftrightarrow \left\{ {\matrix{
{b = 4} \cr
{4a - 3.4 = 4} \cr
} } \right. \cr
& \Leftrightarrow \left\{ {\matrix{
{b = 4} \cr
{4a = 16} \cr} } \right. \Leftrightarrow \left\{ {\matrix{
{b = 4} \cr
{a = 4} \cr} } \right. \cr} \)
Vậy hằng số a = 4; b = 4.
Câu 30 trang 11 Sách bài tập (SBT) Toán 9 tập 2
Giải các hệ phương trình sau theo hai cách (cách thứ nhất: đưa hệ phương trình về dạng
\(\left\{ {\matrix{
{ax + by = c} \cr
{a'x + b'y = c'} \cr} } \right.\);
cách thứ hai: đặt ẩn phụ, chẳng hạn 3x – 2 = s, 3y + 2 = t):
\(a)\left\{ {\matrix{
{2\left( {3x - 2} \right) - 4 = 5\left( {3y + 2} \right)} \cr
{4\left( {3x - 2} \right) + 7\left( {3y + 2} \right) = - 2} \cr} } \right.\)
\(b)\left\{ {\matrix{
{3\left( {x + y} \right) + 5\left( {x - y} \right) = 12} \cr
{ - 5\left( {x + y} \right) + 2\left( {x - y} \right) = 11} \cr} } \right.\)
Giải
a) Cách 1:
\(\eqalign{
& \left\{ {\matrix{
{2\left( {3x - 2} \right) - 4 = 5\left( {3y + 2} \right)} \cr
{4\left( {3x - 2} \right) + 7\left( {3y + 2} \right) = - 2} \cr} } \right. \cr
& \Leftrightarrow \left\{ {\matrix{
{6x - 4 - 4 = 15y + 10} \cr
{12x - 8 + 21y + 14 = - 2} \cr
} } \right. \cr
& \Leftrightarrow \left\{ {\matrix{
{6x - 15y = 18} \cr
{12x + 21y = - 8} \cr
} } \right. \Leftrightarrow \left\{ {\matrix{
{12x - 30y = 36} \cr
{12x + 21y = - 8} \cr
} } \right. \cr
& \Leftrightarrow \left\{ {\matrix{
{6x - 15y = 18} \cr
{51y = - 44} \cr
} } \right. \Leftrightarrow \left\{ {\matrix{
{2x - 5y = 6} \cr
{y = - {{44} \over {51}}} \cr
} } \right. \cr
& \Leftrightarrow \left\{ {\matrix{
{2x = 6 - {{220} \over {51}}} \cr
{y = - {{44} \over {51}}} \cr
} } \right. \Leftrightarrow \left\{ {\matrix{
{2x = {{86} \over {51}}} \cr
{y = - {{44} \over {51}}} \cr
} } \right. \cr
& \Leftrightarrow \left\{ {\matrix{
{x = {{43} \over {51}}} \cr
{y = - {{44} \over {51}}} \cr} } \right. \cr} \)
Cách 2: Đặt 3x – 2 = s, 3y + 2 = t ta có hệ phương trình:
\(\eqalign{
& \left\{ {\matrix{
{2s - 4 = 5t} \cr
{4s + 7t = - 2} \cr
} } \right. \Leftrightarrow \left\{ {\matrix{
{4s - 10t = 8} \cr
{4s + 7t = - 2} \cr
} } \right. \cr
& \Leftrightarrow \left\{ {\matrix{
{17t = - 10} \cr
{2s - 5t = 4} \cr
} } \right. \Leftrightarrow \left\{ {\matrix{
{t = - {{10} \over {17}}} \cr
{2s - 5t = 4} \cr
} } \right. \cr
& \Leftrightarrow \left\{ {\matrix{
{t = - {{10} \over {17}}} \cr
{2s - 5.\left( { - {{10} \over {17}}} \right) = 4} \cr
} } \right. \cr
& \Leftrightarrow \left\{ {\matrix{
{t = - {{10} \over {17}}} \cr
{2s = 4 - {{50} \over {17}}} \cr
} } \right. \cr
& \Leftrightarrow \left\{ {\matrix{
{t = - {{10} \over {17}}} \cr
{s = {9 \over {17}}} \cr} } \right. \cr} \)
Suy ra:
\(\eqalign{
& \left\{ {\matrix{
{3x - 2 = {9 \over {17}}} \cr
{3y + 2 = - {{10} \over {17}}} \cr
} } \right. \Leftrightarrow \left\{ {\matrix{
{3x = 2 + {9 \over {17}}} \cr
{3y = - {{10} \over {17}} - 2} \cr
} } \right. \cr
& \Leftrightarrow \left\{ {\matrix{
{3x = {{43} \over {17}}} \cr
{3y = - {{44} \over {17}}} \cr
} } \right. \Leftrightarrow \left\{ {\matrix{
{x = {{43} \over {51}}} \cr
{y = - {{44} \over {51}}} \cr} } \right. \cr} \)
Vậy hệ phương trình đã cho có một nghiệm (x; y) = \(\left( {{{43} \over {51}}; - {{44} \over {51}}} \right)\)
b) Cách 1:
\(\eqalign{
& \left\{ {\matrix{
{3\left( {x + y} \right) + 5\left( {x - y} \right) = 12} \cr
{ - 5\left( {x + y} \right) + 2\left( {x - y} \right) = 11} \cr
} } \right. \cr
& \Leftrightarrow \left\{ {\matrix{
{3x + 3y + 5x - 5y = 12} \cr
{ - 5x - 5y + 2x - 2y = 11} \cr
} } \right. \cr
& \Leftrightarrow \left\{ {\matrix{
{8x - 2y = 12} \cr
{ - 3x - 7y = 11} \cr
} } \right. \Leftrightarrow \left\{ {\matrix{
{4x - y = 6} \cr
{3x + 7y = - 11} \cr
} } \right. \cr
& \Leftrightarrow \left\{ {\matrix{
{12x - 3y = 18} \cr
{12x + 28y = - 44} \cr
} } \right. \Leftrightarrow \left\{ {\matrix{
{31y = - 62} \cr
{4x - y = 6} \cr
} } \right. \cr
& \Leftrightarrow \left\{ {\matrix{
{y = - 2} \cr
{4x + 2 = 6} \cr
} } \right. \Leftrightarrow \left\{ {\matrix{
{y = - 2} \cr
{x = 1} \cr} } \right. \cr} \)
Cách 2: Đặt x + y = s; x – y = t ta có hệ phương trình:
\(\eqalign{
& \left\{ {\matrix{
{3s + 5t = 12} \cr
{ - 5s + 2t = 11} \cr
} } \right. \Leftrightarrow \left\{ {\matrix{
{15s + 25t = 60} \cr
{ - 15s + 6t = 33} \cr
} } \right. \cr
& \Leftrightarrow \left\{ {\matrix{
{31t = 93} \cr
{ - 5s + 2t = 11} \cr
} } \right. \Leftrightarrow \left\{ {\matrix{
{t = 3} \cr
{ - 5s + 2.3 = 11} \cr
} } \right. \cr
& \Leftrightarrow \left\{ {\matrix{
{t = 3} \cr
{s = - 1} \cr} } \right. \cr} \)
Suy ra:
\(\eqalign{
& \left\{ {\matrix{
{x + y = - 1} \cr
{x - y = 3} \cr
} } \right. \Leftrightarrow \left\{ {\matrix{
{2x = 2} \cr
{x - y = 3} \cr
} } \right. \cr
& \Leftrightarrow \left\{ {\matrix{
{x = 1} \cr
{1 - y = 3} \cr
} } \right. \Leftrightarrow \left\{ {\matrix{
{x = 1} \cr
{y = - 2} \cr} } \right. \cr} \)
Vậy hệ phương trình đã cho có một nghiệm (x; y) = (1; -2).
Câu 31 trang 12 Sách bài tập (SBT) Toán 9 tập 2
Tìm giá trị của m để nghiệm của hệ phương trình
\(\left\{ {\matrix{
{{{x + 1} \over 3} - {{y + 2} \over 4} = {{2\left( {x - y} \right)} \over 5}} \cr
{{{x - 3} \over 4} - {{y - 3} \over 3} = 2y - x} \cr} } \right.\)
cũng là nghiệm của phương trình 3mx – 5y = 2m + 1.
Giải
Giải hệ phương trình:
\(\eqalign{
& \left( I \right)\left\{ {\matrix{
{{{x + 1} \over 3} - {{y + 2} \over 4} = {{2\left( {x - y} \right)} \over 5}} \cr
{{{x - 3} \over 4} - {{y - 3} \over 3} = 2y - x} \cr
} } \right. \cr
& \Leftrightarrow \left\{ {\matrix{
{20x + 20 - 15y - 30 = 24x - 24y} \cr
{3x - 9 - 4y + 12 = 24y - 12x} \cr
} } \right. \cr
& \Leftrightarrow \left\{ {\matrix{
{4x - 9y = - 10} \cr
{15x - 28y = - 3} \cr
} } \right. \cr
& \Leftrightarrow \left\{ {\matrix{
{60x - 135y = - 150} \cr
{60x - 112y = - 12} \cr
} } \right. \cr
& \Leftrightarrow \left\{ {\matrix{
{ - 23y = - 138} \cr
{4x - 9y = - 10} \cr
} } \right. \Leftrightarrow \left\{ {\matrix{
{y = 6} \cr
{4x - 9.6 = - 10} \cr
} } \right. \cr
& \Leftrightarrow \left\{ {\matrix{
{y = 6} \cr
{4x = 44} \cr
} } \right. \Leftrightarrow \left\{ {\matrix{
{y = 6} \cr
{x = 11} \cr} } \right. \cr} \)
Cặp (x; y) = (11; 6) là nghiệm của phương trình 3mx – 5y = 2m + 1
Thay x = 11; y = 6 ta có:
\(33m - 30 = 2m + 1 \Leftrightarrow 31m = 31 \Leftrightarrow m = 1\)
Vậy với m = 1 thì nghiệm của hệ (I) cũng là nghiệm của phương trình:
3mx – 5y = 2m + 1.
Giaibaitap.me
Giải bài tập trang 12 bài 4 giải hệ phương trình bằng phương pháp cộng đại số Sách bài tập (SBT) Toán 9 tập 2. Câu 32: Tìm giá trị của m để đường thẳng (d)...
Giải bài tập trang 11, 12, 13 bài 4 giải hệ phương trình bằng phương pháp cộng đại số Sách bài tập (SBT) Toán 9 tập 2. Câu 25: Giải các hệ phương trình sau bằng phương pháp cộng đại số...
Giải bài tập trang 13 bài 5 giải bài toán bằng cách lập hệ phương trình Sách bài tập (SBT) Toán 9 tập 2. Câu 35: Tổng của hai số bằng 59. Hai lần của số này bé hơn ba lần của số kia là 7. Tìm hai số đó...
Giải bài tập trang 13, 14 bài 5 giải bài toán bằng cách lập hệ phương trình Sách bài tập (SBT) Toán 9 tập 2. Câu 39: Hôm qua mẹ của Lan đi chợ mua 5 quả trứng gà và 5 quả trứng vịt hết 10 000 đồng....