Câu 15 trang 158 Sách bài tập (SBT) Toán 9 Tập 1
Cho tam giác ABC, các đường cao BH và CK. Chứng minh rằng:
a) Bốn điểm B, C, H, K cùng thuộc một đường tròn;
b) HK < BC.
Giải:
a) Gọi M là trung điểm của BC
Tam giác BCH vuông tại H có HM là đường
trung tuyến nên:
\(HM = {1 \over 2}BC\) (tính chất tam giác vuông)
Tam giác BCK vuông tại K có KM là đường
trung tuyến nên:
\(KM = {1 \over 2}BC\) (tính chất tam giác vuông)
Suy ra: MB = MC = MH = MK.
Vậy bốn điểm B, C, H, K cùng nằm trên một đường tròn tâm M bán kính bằng \({1 \over 2}BC\).
b) Trong đường tròn tâm M ta có KH là dây cung không đi qua tâm, BC là đường kính nên: KH < BC.
Câu 16 trang 159 Sách bài tập (SBT) Toán 9 Tập 1
Tứ giác ABCD có \(\widehat B = \widehat D = 90^\circ \).
a) Chứng minh rằng bốn điểm A, B, C, D cùng thuộc một đường tròn.
b) So sánh độ dài AC và BD. Nếu AC = BD thì tứ giác ABCD là hình gì?
Giải:
a) Gọi M là trung điểm của AC.
Tam giác ABC vuông tại B có BM là đường trung tuyến nên:
\(BM = {1 \over 2}AC\) (tính chất tam giác vuông)
Tam giác ACD vuông tại D có DM là đường trung tuyến nên:
\(DM = {1 \over 2}AC\) (tính chất tam giác vuông)
Suy ra: MA = MB = MC = MD.
Vậy bốn điểm A, B, C, D cùng nằm trên một đường tròn tâm M bán kính bằng \({1 \over 2}AC\).
b) BD là dây của đường tròn (I), còn AC là đường kính nên AC ≥ BD
AC = BD khi và chỉ khi BD cũng là đường kính, khi đó ABCD là hình chữ nhật
Câu 17 trang 159 Sách bài tập (SBT) Toán 9 Tập 1
Cho nửa đường tròn tâm O, đường kính AB và dây EF không cắt đường kính. Gọi I và K lần lượt là chân các đường vuông góc kẻ từ A và B đến EF. Chứng minh rằng IE = KF.
Giải:
Ta có: AI ⊥ EF (gt)
BK ⊥ EF (gt)
Suy ra: AI // BK
Suy ra tứ giác ABKI là hình thang
Kẻ OH ⊥ EF
Suy ra: OH // AI // BK
Ta có: OA = OB (= R)
Suy ra: HI = HK
Hay: HE + EI = HF+FK (1)
Lại có: HE = HF (đường kính dây cung) (2)
Từ (1) và (2) suy ra: IE = KF.
Câu 18 trang 159 Sách bài tập (SBT) Toán 9 Tập 1
Cho đường tròn (O) có bán kính OA = 3cm. Dây BC của đường tròn vuông góc với OA tại trung điểm của OA. Tính độ dài BC.
Giải:
Gọi I là trung điểm của AB
Suy ra: \(IO = IA = {1 \over 2}OA = {3 \over 2}\)
Ta có: BC ⊥OA (gt)
Suy ra: \(\widehat {OIB} = 90^\circ \)
Áp dụng định lí Pi-ta-go vào tam giác vuông OIB ta có: \(O{B^2} = B{I^2} + I{O^2}\)
suy ra: \(B{I^2} = O{B^2} - I{O^2}\)
\(={3^2} - {\left( {{3 \over 2}} \right)^2} = 9 - {9 \over 4} = {{27} \over 4}\)
\(BI ={{3\sqrt 3 } \over 2}\) (cm)
Ta có: BI = CI (đường kính dây cung)
Suy ra: \(BC = 2BI=2.{{3\sqrt 3 } \over 2} = 3\sqrt 3 \) (cm)
Giaibaitap.me
Giải bài tập trang 158, 159 bài 2 Đường kính và dây của đường tròn Sách bài tập (SBT) Toán 9 tập 2. Câu 15: Cho tam giác ABC, các đường cao BH và CK. Chứng minh rằng...
Giải bài tập trang 1590 bài 2 Đường kính và dây của đường tròn Sách bài tập (SBT) Toán 9 tập 2. Câu 19: Cho đường tròn (O), đường kính AD = 2R. Vẽ cung tâm D bán kính R, cung này cắt đường tròn (O) ở B và C...
Giải bài tập trang 159 bài 2 Đường kính và dây của đường tròn Sách bài tập (SBT) Toán 9 tập 2. Câu 18: Cho đường tròn (O) có bán kính OA = 3cm. Dây BC của đường tròn vuông góc với OA tại trung điểm của OA...
Giải bài tập trang 159, 160 bài 2 Đường kính và dây của đường tròn Sách bài tập (SBT) Toán 9 tập 2. Câu 23: Cho đường tròn (O), điểm A nằm bên trong đường tròn, điểm B nằm ngoài đường tròn sao cho trung điểm I của AB nằm bên trong đường tròn...