Trang chủ
Loigiaihay.com 2025

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết
Bình chọn:
4.9 trên 7 phiếu

Giải sách bài tập Toán 9

CHƯƠNG II: ĐƯỜNG TRÒN

Giải bài tập trang 156 bài 1 Sự xác định đường tròn. Tính chất đối xứng của đường tròn Sách bài tập (SBT) Toán 9 tập 2. Câu 1: Chứng minh rằng bốn điểm A, B, C, D cùng thuộc một đường tròn. Tính bán kính của đường tròn đó...

Câu 1 trang 156 Sách Bài Tập (SBT) Toán 9 Tập 1.

Cho hình chữ nhật ABCD có AD = 12cm, CD = 16cm. Chứng minh rằng bốn điểm A, B, C, D cùng thuộc một đường tròn. Tính bán kính của đường tròn đó.

Gợi ý làm bài

Gọi I là giao điểm của hai đường chéo AC và BD. Ta có:

IA = IB = IC = ID (tính chất hình chữ nhật)

Vậy bốn điểm A, B, C, D  cùng nằm trên một đường tròn bán kính \({{AC} \over 2}\)

Áp dụng định lí Pi-ta-go vào tam giác vuông ABC ta có:

\(\eqalign{
& A{C^2} = A{B^2} + B{C^2} = {16^2} + {12^2} \cr 
& = 256 + 144 = 400 \cr} \)

Suy ra: \(AC = \sqrt {400}  = 20\,(cm)\)

Vậy bán kính đường tròn là: \(IA = {{AC} \over 2} = {{20} \over 2} = 10\,(cm)\)

 


Câu 2 trang  156 Sách Bài Tập (SBT) Toán 9 Tập 1.

Trên mặt phẳng tọa độ Oxy,  hãy xác định vị trí tương đối của mỗi điểm:

A( 1 ; -1), \(B( - \sqrt 2 ;\sqrt 2 )\) và C( 1 ; 2) đối với đường tròn (O ; 2 ).

Gợi ý làm bài

Gọi R là bán kính của đường tròn (O ; 2). Ta có R = 2

\(O{A^2} = {1^2} + {1^2} = 2 \Rightarrow OA = \sqrt 2  < 2\)

Vì OA < R nên điểm A nằm trong đường tròn (O; 2)

\(\eqalign{
& O{B^2} = {(\sqrt 2 )^2} + {(\sqrt 2 )^2} \cr 
& = 2 + 2 = 4 \Rightarrow OB = 2 \cr} \)

Vì OB = R nên điểm B thuộc đường tròn (O; 2)

\(\eqalign{
& O{C^2} = {1^2} + {2^2} = 1 + 4 = 5 \cr 
& \Rightarrow OC = \sqrt 5 > 2 \cr} \)

Vì OC > R nên điểm C nằm ngoài đường tròn (O; 2).

 


Câu 3 trang 156 Sách Bài Tập (SBT) Toán 9 Tập 1.

 

Hãy nối mỗi ô ở cột trái với mỗi ô ở cột phải để được khẳng định đúng:

(1)Tập hợp các điểm có khoảng cách đến điểm O cố định bằng 3cm

(4) có khoảng cách đến điểm O nhỏ hơn hoặc bằng 3cm.

(2)Đường tròn tâm O bán kính 3cm gồm tất cả những điểm

(5) cách điểm O một khoảng bằng 3cm.

(3)  Hình tròn tâm O bán kình 3cm gồm tất cả những điểm

(6) là đường tròn tâm O bán kính 3cm.

 

(7) có khoảng cách đến điểm O lớn hơn 3cm.

 

Gợi ý làm bài

(1)   nối  với (6)

(2)   nối với (5)

(3)    nối với (4).

 


Câu 4 trang 156 Sách Bài Tập (SBT) Toán 9 Tập 1.

Cho góc nhọn xOy và hai điểm D, E thuộc tia Oy. Dựng đường tròn tâm M đi qua D và E sao cho tâm M nằm trên tia Ox. 

Gợi ý làm bài

*        Cách dựng

−        Dựng đường trung trực của DE cắt Ax tại M.

−        Dựng đường tròn tâm M bán kính MD.                            

*        Chứng minh

Theo cách dựng ta có:

\(M \in Ox\)

MD = ME (tính chất đường  trung trực)

Suy ra: \(E \in (M;MD)\)

Giaibaitap.me

Góp ý - Báo lỗi

Vấn đề em gặp phải là gì ?

Hãy viết chi tiết giúp Giaibaitap.me

Bài giải mới nhất

Bài giải mới nhất các môn khác