Trang chủ
Loigiaihay.com 2025

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết
Bình chọn:
5 trên 1 phiếu

Giải bài tập Toán 12 Nâng cao

CHƯƠNG I. ỨNG DỤNG ĐẠO HÀM ĐỂ KHẢO SÁT VÀ VẼ ĐỒ THỊ CỦA HÀM SỐ

Giải bài tập trang 64, 65, 66, 67 ôn tập chương I - Ứng dụng đạo hàm để khảo sát và vẽ đồ thị của hàm số SGK Giải tích 12 Nâng cao. Câu 97: Xét phương trình...

97. Xét phương trình \({x^3} + 3{x^2} = m\)

(A) Với m =5, phương trình đã có ba nghiệm;

(B) Với m = -1, phương trình có hai nghiệm.

(C) Với m =4, phương trình đã có ba nghiệm phân biệt;

(D) Với m =2, phương trình đã có ba nghiệm phân biệt

Giải


Vẽ đồ thị hàm số \(y = {x^3} + 3{x^2}\)

\(\eqalign{
& \,\,\,\,y' = 3{x^2} + 6x;\,y' = 0 \cr
& \Leftrightarrow \left[ \matrix{
x = - 2;\,\,y\left( { - 2} \right) = 4 \hfill \cr
x = 0;\,\,\,y\left( 0 \right) = 0 \hfill \cr} \right. \cr} \)

m =2: Phương trình có 3 nghiệm phân biệt.

Chọn (D).

98. Đồ thị hàm số \(y = {{x - 2} \over {2x + 1}}\)

(A) Nhận điểm \(\left( { - {1 \over 2};{1 \over 2}} \right)\) làm tâm đối xứng.

(B) Nhận điểm \(\left( { - {1 \over 2};2} \right)\) làm tâm đối xứng.

(C) Không có tâm đối xứng.

(D) Nhận điểm \(\left( {{1 \over 2};{1 \over 2}} \right)\) làm tâm đối xứng.

Giải

Tiệm cận đứng: \(x =  - {1 \over 2}\); Tiệm cận ngang: \(y = {1 \over 2}\)

Giao điểm hai tiệm cận \(I\left( { - {1 \over 2};{1 \over 2}} \right)\) là tâm đối xứng của đồ thị hàm số.

Chọn (A).

99. Số giao điểm của hai đường cong \(y = {x^3} - {x^2} - 2x + 3\) và \(y = {x^2} - x + 1\) là:

(A) 0;                   (B) 1;                   (C) 3;                   (D) 2.

Giải

Hoành độ giao điểm của hai đường cong là nghiệm phương trình:

\(\eqalign{
& \,\,\,\,{x^3} - {x^2} - 2x + 3 = {x^2} - x + 1 \cr
& \Leftrightarrow {x^3} - 2{x^2} - x + 2 = 0 \cr&\Leftrightarrow \left( {x - 1} \right)\left( {{x^2} - x - 2} \right) = 0 \cr
& \Leftrightarrow \left( {x - 1} \right)\left( {x + 1} \right)\left( {x - 2} \right) = 0 \cr&\Leftrightarrow \left[ \matrix{
x = \pm 1 \hfill \cr
x = 2 \hfill \cr} \right.\,\,\,\,\,Chon\,(C) \cr} \)

100. Các đồ thị của hai hàm số \(y = 3 - {1 \over x}\) và \(y = 4{x^2}\) tiếp xúc với nhau tại điểm M có hoành độ là:

(A) x = -1;             (B) x = 1;             (C) x =2;              (D) \(x = {1 \over 2}\)

Giải

\(\eqalign{
& f\left( x \right) = g\left( x \right) \Leftrightarrow 3 - {1 \over x} = 4{x^2} \Leftrightarrow 4{x^3} - 3x + 1 = 0 \cr
& \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, \Leftrightarrow {\left( {2x - 1} \right)^2}\left( {x + 1} \right) = 0 \cr
& f'\left( {{1 \over 2}} \right) = g'\left( {{1 \over 2}} \right) = 0 \cr} \)

Chọn (D).

Giaibaitap.me

 

Góp ý - Báo lỗi

Vấn đề em gặp phải là gì ?

Hãy viết chi tiết giúp Giaibaitap.me

Bài giải mới nhất

Bài giải mới nhất các môn khác