Bài 1 trang 75 SGK Đại số và Giải tích 12 Nâng cao
Trong các khẳng định sau, khẳng định nào đúng, khẳng định nào sai?
a) Với số thực a và các số nguyên m, n, ta có:
\({a^m}.{a^n} = {a^{m.n}};{{{a^m}} \over {{a^n}}} = {a^{m - n}}\)
b) Với hai số thực a, b cùng khác 0 và số nguyên n, ta có:
\({\left( {ab} \right)^n} = {a^n}.{b^n};{\left( {{a \over b}} \right)^n} = {{{a^n}} \over {{b^n}}}\)
c) Với hai số thực a, b thỏa mãn 0<ad) Với số thực a khác 0 và hai số nguyên m, n, ta có: Nếu m>n thì \({a^m} > {a^n}\).
Giải
a) Sai.
b) Đúng.
c) Sai ( chẳng hạn 0d) Sai ( chẳng hạn 3>2 nhưng \({\left( {{1 \over 2}} \right)^3} < {\left( {{1 \over 2}} \right)^2}\).
Bài 2 trang 75 SGK Đại số và Giải tích 12 Nâng cao
Xét khẳng định: “Với số thực a và hai số hữu tỉ r, s, ta có \({\left( {{a^r}} \right)^s} = {a^{rs}}\)”.
Với điều kiện nào trong các điều kiện sau thì khẳng định trên đúng?
(A) a bất kì (B) \(a \ne 0\)
(C) a>0 (D) a<1.
Giải
( C) đúng.
Bài 3 trang 76 SGK Đại số và Giải tích 12 Nâng cao
Viết các số sau dưới dạng số nguyên hay phân số tối giản:
\({7^{ - 1}}.14;{4 \over {{3^{ - 2}}}};{\left( {{4 \over 5}} \right)^{ - 2}};{{{{\left( { - 18} \right)}^2}.5} \over {{{15}^2}.3}}\)
Giải
\({7^{ - 1}}.14 = {{14} \over 7} = 2\);
\({4 \over {{3^{ - 2}}}} = {4.3^2} = 36\);
\({\left( {{4 \over 5}} \right)^{ - 2}} = {\left( {{5 \over 4}} \right)^2} = {{25} \over {16}}\);
\({{{{\left( { - 18} \right)}^2}.5} \over {{{15}^2}.3}} = {{{{18}^2}.5} \over {{5^2}{{.3}^3}}} = {{{2^2}{{.5.3}^4}} \over {{5^2}{{.3}^3}}} = {{{2^2}.3} \over 5} = {{12} \over 5}\)
Bài 4 trang 76 SGK Đại số và Giải tích 12 Nâng cao
Thực hiện phép tính:
a) \({81^{ - 0,75}} + {\left( {{1 \over {125}}} \right)^{{{ - 1} \over 3}}} - {\left( {{1 \over {32}}} \right)^{{{ - 3} \over 5}}};\)
b) \(0,{001^{{{ - 1} \over 3}}} - {\left( { - 2} \right)^{ - 2}}{.64^{{2 \over 3}}} - {8^{ - 1{1 \over 3}}} + {\left( {{9^o}} \right)^2};\)
c) \({27^{{2 \over 3}}} + {\left( {{1 \over {16}}} \right)^{ - 0,75}} - {25^{0,5}}\)
d) \({\left( { - 0,5} \right)^{ - 4}} - {625^{0,25}} - {\left( {2{1 \over 4}} \right)^{ - 1{1 \over 2}}} + 19{\left( { - 3} \right)^{ - 3}}\)
Giải
a) \({81^{ - 0,75}} + {\left( {{1 \over {125}}} \right)^{{{ - 1} \over 3}}} - {\left( {{1 \over {32}}} \right)^{{{ - 3} \over 5}}} \)
\(= {\left( {{3^4}} \right)^{ {{ - 3} \over 4}}} + {\left( {{{\left( {{1 \over 5}} \right)}^3}} \right)^{{{ - 1} \over 3}}} - {\left( {{{\left( {{1 \over 2}} \right)}^5}} \right)^{{{ - 3} \over 5}}}\)
\(\, = {\left( 3 \right)^{ - 3}} + {\left( {{1 \over 5}} \right)^{ - 1}} - {\left( {{1 \over 2}} \right)^{ - 3}} \)
\(= {1 \over {27}} + 5 - 8 = {1 \over {27}} - 3 = - {{80} \over {27}}\)
b) \(0,{001^{{{ - 1} \over 3}}} - {\left( { - 2} \right)^{ - 2}}{.64^{{2 \over 3}}} - {8^{ - 1{1 \over 3}}} + {\left( {{9^o}} \right)^2}\)
\(= {\left( {{{10}^{ - 3}}} \right)^{ - {1 \over 3}}} - {2^{ - 2}}.{\left( {{2^6}} \right)^{{2 \over 3}}} - {\left( {{2^3}} \right)^{ - {4 \over 3}}} + 1\)
\( = 10 - {2^2} - {2^{ - 4}} + 1 = 7 - {1 \over {16}} = {{111} \over {16}}\)
c) \({27^{{2 \over 3}}} + {\left( {{1 \over {16}}} \right)^{ - 0,75}} - {25^{0,5}} \)
\(= {\left( {{3^3}} \right)^{{2 \over 3}}} + {\left( {{2^{ - 4}}} \right)^{ - {3 \over 4}}} - {\left( {{5^2}} \right)^{{1 \over 2}}} = {3^2} + {2^3} - 5 = 12\)
d) \({\left( { - 0,5} \right)^{ - 4}} - {625^{0,25}} - {\left( {2{1 \over 4}} \right)^{ - 1{1 \over 2}}} + 19{\left( { - 3} \right)^{ - 3}}\)
\(= {\left( {{{\left( { - 2} \right)}^{ - 1}}} \right)^{ - 4}} - {\left( {{5^4}} \right)^{{1 \over 4}}} - {\left( {{{\left( {{3 \over 2}} \right)}^2}} \right)^{ - {3 \over 2}}} + {{19} \over { - 27}}\)
\( = {2^4} - 5 - {\left( {{3 \over 2}} \right)^{ - 3}} - {{19} \over {27}} = 11 - {8 \over {27}} - {{19} \over {27}} = 10.\)
Giaibaitap.me
Giải bài tập trang 76, 77, 78 bài 1 lũy thừa với số mũ hữu tỉ SGK Giải tích 12 Nâng cao. Câu 5: Đơn giản biểu thức ( với a, b là những số dương)...
Giải bài tập trang 78 bài 1 lũy thừa với số mũ hữu tỉ SGK Giải tích 12 Nâng cao. Câu 9: Từ tính chất của lũy thừa với số mũ nguyên dương, chứng minh:...
Giải bài tập trang 81 bài lũy thừa với số mũ thực SGK Giải tích 12 Nâng cao. Câu 12: Xét mệnh đề:...
Giải bài tập trang 81, 82 bài lũy thừa với số mũ thực SGK Giải tích 12 Nâng cao. Câu 16: Đơn giản các biểu thức...